Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Elektrotechnik und Informationstechnologie Master Information
Master-Studium (Studienreglement 2008)
Fächer der Vertiefung
Insgesamt 42 KP müssen im Masterstudium aus Vertiefungsfächern erreicht werden. Der individuelle Studienplan unterliegt der Zustimmung eines Tutors.
Electronics and Photonics
Empfohlene Fächer
Diese Fächer sind eine Empfehlung. Sie können Fächer aus allen Vertiefungsrichtungen wählen. Sprechen Sie mit Ihrem Tutor.
227-0117-10LMess- und Versuchstechnik Belegung eingeschränkt - Details anzeigen W6 KP4GC. Franck, H.‑J. Weber
KurzbeschreibungEinführung in die Versuchs- und Messtechnik, wie sie Grundlage in allen Bereichen der Ingenieurswissenschaften ist. Die Vorlesung ist stark praxis- und anwendungsorientiert, und beinhaltet mehrere praktische Versuche. Die Inhalte «Mess- und Versuchstechnik» sind für alle Fachgebiete relevant, in dieser Vorlesung werden sie auch mit Beispielen aus der Hochspannungstechnik behandelt.
LernzielAm Ende der Vorlesung können die Studierenden:
• grundlegende elektrische Versuche durchführen und Messdaten, insbesondere mit dem Oszilloskop, erheben.
• ein sinnvolles Messprotokoll führen, ein klares Versuchsprotokoll erstellen und die Messgenauigkeit des Versuchs abschätzen.
• grundlegende Ursachen elektromagnetischer Störungen sowie Methoden zur Vermeidung, Reduktion oder Abschirmung beschreiben und anwenden.
• verschiedene Methoden zur Erzeugung und Messung von hohen Spannungen erklären und anwenden, sowie dazugehörende Grössen berechnen.
Inhalt- Messtechnik, Messunsicherheit, Messprotokolle
- Erzeugung und Messung hoher Spannungen
- Elektromagnetische Verträglichkeit
- Laborpraktika
LiteraturJ. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719)
A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994)
A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099)
227-0125-00LOptics and PhotonicsW6 KP2V + 2UJ. Leuthold
KurzbeschreibungThis lecture covers both - the fundamentals of "Optics" such as e.g. "ray optics", "coherence", the "Planck law" or the "Einstein relations" but also the fundamentals of "Photonics" on the generation, processing, transmission and detection of photons.
LernzielA sound base for work in the field of optics and photonics will be given.
InhaltChapter 1: Ray Optics
Chapter 2: Electromagnetic Optics
Chapter 3: Polarization
Chapter 4: Coherence and Interference
Chapter 5: Fourier Optics and Diffraction
Chapter 6: Guided Wave Optics
Chapter 7: Optical Fibers
Chapter 8: The Laser
SkriptLecture notes will be handed out.
Voraussetzungen / BesonderesFundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics.
227-0155-00LMachine Learning on Microcontrollers Belegung eingeschränkt - Details anzeigen
Number of participants limited to 40.
Registration in this class requires the permission of the instructors.
W6 KP3GM. Magno, L. Benini
KurzbeschreibungMachine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly “smart”. This lecture gives an overview of ML methods and algorithms to process and extracts useful near-sensor information in end-nodes of the “internet-of-things”, using low-power microcontrollers (ARM-Cortex-M; RISC-V).
LernzielLearn how to Process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ExG bio-signals, cameras…). The main objective is to study in detail how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers becoming Tiny Machine learning algorithms.
InhaltThe final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core microcontrollers, coupled with performance and energy efficiency analysis and optimization. The main topics of the course include:

- Sensors and sensor data acquisition with low power embedded systems

- Machine Learning: Overview of supervised and unsupervised learning and in particular supervised learning ( Decision Trees, Random, Support Vector Machines, Artificial Neural Networks, Deep Learning, and Convolutional Networks)

- Low-power embedded systems and their architecture. Low Power microcontrollers (ARM-Cortex M) and RISC-V-based Parallel Ultra Low Power (PULP) systems-on-chip.

- Low power smart sensor system design: hardware-software tradeoffs, analysis, and optimization. Implementation and performance evaluation of ML in battery-operated embedded systems.

The laboratory exercised will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image, and sound classification, using real sensors data and real MCU boards.

Presentations from Ph.D. students and the visit to the Digital Circuits and Systems Group will introduce current research topics and international research projects.
SkriptScript and exercise sheets. Books will be suggested during the course.
Voraussetzungen / BesonderesPrerequisites: Good experience in C language programming. Microprocessors and computer architecture. Basics of Digital Signal Processing. Some exposure to machine learning concepts is also desirable.
227-0160-00LFundamentals of Physical Modeling and SimulationsW6 KP2V + 2U + 1PJ. Smajic
KurzbeschreibungMathematical description of different physical phenomena and numerical methods for solving the obtained equations are discussed. The course presents the fundamentals of mathematical modeling including ordinary and partial differential equations along with boundary and initial conditions. Finite Difference Method and Finite Element Method for solving boundary value problems are shown in detail.
LernzielAfter completing this course a student will understand the main idea of representing physical phenomena with mathematical equations, will be able to apply an appropriate numerical method for solving the obtained equations, and will possess the knowledge to qualitatively evaluate the obtained results.
Inhalta. Introduction to physical modeling and simulations
b. Numerical methods for solving boundary (initial) value problems
b.i. Finite difference method (FDM)
b.ii. Finite element method (FEM)
c. Boundary (initial) value problems of different physical phenomena
c.i. Static and dynamic electric current distribution in solid conductors
c.ii. Static und dynamic electric charge transport in semiconductors
c.iii. Induced eddy currents in low frequency range (with numerous examples from the area of electrical energy technology)
c.iv. Wave propagation in the RF-, microwave-, and optical frequency range (with numerous examples relevant for communication technology)
c.v. Static and dynamic temperature distribution in solid bodies (with numerous examples relevant for electrical energy technology) Static and dynamic mechanical structural analysis (with numerous examples from the area of MEMS technology)
227-0161-00LMolecular and Materials Modelling Information W4 KP2V + 2UD. Passerone, C. Pignedoli
KurzbeschreibungThe course introduces the basic techniques to interpret experiments with contemporary atomistic simulation, including force fields or ab initio based molecular dynamics and Monte Carlo. Structural and electronic properties will be simulated hands-on for realistic systems.
The modern methods of "big data" analysis applied to the screening of chemical structures will be introduced with examples.
LernzielThe ability to select a suitable atomistic approach to model a nanoscale system, and to employ a simulation package to compute quantities providing a theoretically sound explanation of a given experiment. This includes knowledge of empirical force fields and insight in electronic structure theory, in particular density functional theory (DFT). Understanding the advantages of Monte Carlo and molecular dynamics (MD), and how these simulation methods can be used to compute various static and dynamic material properties. Basic understanding on how to simulate different spectroscopies (IR, X-ray, UV/VIS). Performing a basic computational experiment: interpreting the experimental input, choosing theory level and model approximations, performing the calculations, collecting and representing the results, discussing the comparison to the experiment.
Inhalt-Classical force fields in molecular and condensed phase systems
-Methods for finding stationary states in a potential energy surface
-Monte Carlo techniques applied to nanoscience
-Classical molecular dynamics: extracting quantities and relating to experimentally accessible properties
-From molecular orbital theory to quantum chemistry: chemical reactions
-Condensed phase systems: from periodicity to band structure
-Larger scale systems and their electronic properties: density functional theory and its approximations
-Advanced molecular dynamics: Correlation functions and extracting free energies
-The use of Smooth Overlap of Atomic Positions (SOAP) descriptors in the evaluation of the (dis)similarity of crystalline, disordered and molecular compounds
SkriptA script will be made available and complemented by literature references.
LiteraturD. Frenkel and B. Smit, Understanding Molecular Simulations, Academic Press, 2002.

M. P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Oxford University Press 1990.

C. J. Cramer, Essentials of Computational Chemistry. Theories and Models, Wiley 2004

G. L. Miessler, P. J. Fischer, and Donald A. Tarr, Inorganic Chemistry, Pearson 2014.

K. Huang, Statistical Mechanics, Wiley, 1987.

N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College 1976.

E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press 2010.
227-0303-00LAdvanced PhotonicsW6 KP2V + 2U + 1AA. Emboras, M. Burla, A. Dorodnyy
KurzbeschreibungThe lecture gives a comprehensive insight into various types of nano-scale photonic devices, physical fundamentals of their operation, and an overview of the micro/nano-fabrication technologies. Following applications of nano-scale photonic structures are discussed in details: detectors, photovoltaic cells, atomic/ionic opto-electronic devices and integrated microwave photonics.
LernzielGeneral training in advanced photonic devices with an in-depth understanding of the fundamentals of theory, fabrication, and characterization. Hands-on experience with photonic and optoelectronic device technologies and theory. The students will learn about the importance of advanced photonic devices in energy, communications, digital and neuromorphic computing applications.
InhaltThe following topics will be addressed:
• Photovoltaics: basic thermodynamic principles and fundamental efficiency limitations, physics of semiconductor solar cell, overview of existing solar cell concepts and underlying physical phenomena.
• Micro/nano-fabrication technologies for advanced optoelectronic devices: introduction and device examples.
• Comprehensive insight into the physical mechanisms that govern ionic-atomic devices, present the techniques required to fabricate ultra-scaled nanostructures and show some applications in digital and neuromorphic computing.
• Introduction to microwave photonics (MWP), microwave photonic links, photonic techniques for microwave signal generation and processing.
SkriptThe presentation and the lecture notes will be provided every week.
Literatur“Atomic/Ionic Devices”:
• Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Daniele Ielmini and Rainer Waser, Wiley-VCH
• Electrochemical Methods: Fundamentals and Applications, A. Bard and L. Faulkner, John Willey & Sons, Inc.

• Prof. Peter Wurfel: Physics of Solar Cells, Wiley

“Micro and nano Fabrication”:
• Prof. H. Gatzen, Prof. Volker Saile, Prof. Juerg Leuthold: Micro and Nano Fabrication, Springer

“Microwave Photonics”:
• D. M. Pozar, Microwave Engineering. J. Wiley & Sons, New York, 2005.
• M. Burla, Advanced integrated optical beam forming networks for broadband phased array antenna systems. Enschede, The Netherlands, 2013. DOI: 10.3990/1.9789036507295
• C.H. Cox, Analog optical links: theory and practice. Cambridge University Press, 2006.
Voraussetzungen / BesonderesBasic knowledge of semiconductor physics, physics of the electromagnetic filed and thermodynamics.
227-0330-00LEnergy-Efficient Analog Circuits for IoT SystemsW6 KP2V + 2UT. Jang
KurzbeschreibungWe are facing a new era of the Internet of things, similarly indicated as Industry 4.0, TSensors, Ubiquitous or The Fog. A miniaturized computer is the key to this innovation that senses, collects and processes information from objects. In this class, based on the recent publications, energy efficient analog IC techniques will be introduced which is the main challenge to reduce the battery size.
LernzielThis class introduces key analog building blocks such as energy harvester, frequency generator, data converter, sensor interface, power converter based on the recent publications for IoT systems including wearable electronics, bio-implantable devices, and environmental sensors.
InhaltUltra-low power circuit design methodology and transistor characteristics; Circuit-level design techniques for amplifier, comparator, voltage reference, on-chip oscillator, switched capacitor; IP-level design techniques for energy harvester, data converter, energy harvester and power converters.
Voraussetzungen / BesonderesAnalog Integrated Circuits
227-0455-00LTerahertz: Technology and ApplicationsW5 KP3G + 3AK. Sankaran
KurzbeschreibungThis block course will provide a solid foundation for understanding physical principles of THz applications. We will discuss various building blocks of THz technology - components dealing with generation, manipulation, and detection of THz electromagnetic radiation. We will introduce THz applications in the domain of imaging, sensing, communications, non-destructive testing and evaluations.
LernzielThis is an introductory course on Terahertz (THz) technology and applications. Devices operating in THz frequency range (0.1 to 10 THz) have been increasingly studied in the recent years. Progress in nonlinear optical materials, ultrafast optical and electronic techniques has strengthened research in THz application developments. Due to unique interaction of THz waves with materials, applications with new capabilities can be developed. In theory, they can penetrate somewhat like X-rays, but are not considered harmful radiation, because THz energy level is low. They should be able to provide resolution as good as or better than magnetic resonance imaging (MRI), possibly with simpler equipment. Imaging, very-high bandwidth communication, and energy harvesting are the most widely explored THz application areas. We will study the basics of THz generation, manipulation, and detection. Our emphasis will be on the physical principles and applications of THz in the domain of imaging, sensing, communications, non-destructive testing and evaluations.

The second part of the block course will be a short project work related to the topics covered in the lecture. The learnings from the project work should be presented in the end.
InhaltPART I:

Chapter 1: Introduction to THz Physics
Chapter 2: Components of THz Technology

Chapter 3: THz Generation
Chapter 4: THz Detection
Chapter 5: THz Manipulation

Chapter 6: THz Imaging / Sensing / Communication
Chapter 7: THz Non-destructive Testing
Chapter 8: THz Applications in Plastic & Recycling Industries


Short project work related to the topics covered in the lecture.
Short presentation of the learnings from the project work.
Full guidance and supervision will be given for successful completion of the short project work.
SkriptSoft-copy of lectures notes will be provided.
Literatur- Yun-Shik Lee, Principles of Terahertz Science and Technology, Springer 2009
- Ali Rostami, Hassan Rasooli, and Hamed Baghban, Terahertz Technology: Fundamentals and Applications, Springer 2010
Voraussetzungen / BesonderesBasic foundation in physics, particularly, electromagnetics is required.
Students who want to refresh their electromagnetics fundamentals can get additional material required for the course.
227-0659-00LIntegrated Systems Seminar Information
Findet dieses Semester nicht statt.
KurzbeschreibungIm "IIS Fachseminar" lernen die Studierenden Themen, Ideen oder Probleme der wissenschaftlichen Forschung zu vermitteln durch Hören von Vorträgen erfahrener Sprecher und durch eine eigene Präsentation einer wissenschaftlichen Arbeit in einer Konferenz-typischen Situation mit spezifischer Zuhörerschaft.
LernzielDas Seminar hat das Ziel, Studierenden und Doktorierenden die wichtigsten Grundlagen einer soliden Präsentationstechnik zu vermitteln. Die Teilnehmer haben die Gelegenheit, sich in ein aktuelles Thema durch Literaturstudium einzuarbeiten und die erzielten Ergebnisse in einem 20-minütigen Vortrag auf Englisch zu präsentieren. Der Besuch des Seminars ermöglicht, einen Überblick über aktuelle Probleme der Nanoelektronik und Bio-Elektromagnetik zu bekommen.
InhaltDas Seminar befasst sich mit aktuellen Themen des Designs von digitalen integrierten Schaltungen, der physikalischen Charakterisierung in der Nanoelektronik und der Bio-Elektromagnetik Simulation.

Die Studiernden lernen Einführung in professionelles Literaturstudium, Präsentationstechnik, Planung und Erstellung eines wissenschaftlichen Vortrages.
Literaturmit dem Betreuer zu diskutieren
227-0622-00LThermal Modeling: From Semiconductor to Medical Devices and Personalized Therapy PlanningW4 KP2V + 1UE. Neufeld, M. Luisier
KurzbeschreibungThe course introduces computational techniques to model electromagnetic heating across many orders of magnitudes, from the atomic to the macroscopic scale. Both desired and undesired thermal effects will be covered, e.g. thermal cancer therapies based on tissue heating or Joule heating in semiconductor devices. A wide range of simulation approaches and numerical methods will be introduced.
LernzielDuring this course the students will:

- learn the physics governing and computational models describing electromagnetic-induced heating;

- get familiar with computational simulation techniques across a wide range of spatial scales, incl. methods to simulate in vivo heating, considering thermoregulation and perfusion, or quantum mechanical approaches considering heat at the level of atomic vibrations;

- implement and apply simulation techniques within a state-of-the-art open-source simulation platform for computational life sciences, as well as a framework for computer-aided design of semiconductor devices;

- learn about remaining challenges in this field
InhaltThe following topics will be discussed during the semester:

- Introduction about electromagnetic heating (from its historical perspective to its application in biology);

- Microscopic/Macroscopic thermal transport (governing equations, numerical methods, examples);

- Numerical algorithms and their implementation in python and/or C++, parallelisation approaches, and high performance computing solutions;

- Practical examples: thermal therapy planning with Sim4Life and technology computer aided design with OMEN;

- Model verification and validation.
SkriptLecture slides are distributed every week and can be found at
Voraussetzungen / BesonderesThe course requires an open attitude towards interdisciplinarity, basic python scripting and C++ coding skills, undergraduate entry-level familiarity with electric & magnetic fields/forces, differential equations, calculus, and basic knowledge of biology and quantum mechanics.
227-0662-00LOrganic and Nanostructured Optics and Electronics (Course)
Findet dieses Semester nicht statt.
W3 KP2GV. Wood
KurzbeschreibungThis course examines the optical and electronic properties of excitonic materials that can be leveraged to create thin-film light emitting devices and solar cells. Laboratory sessions provide students with experience in synthesis and optical characterization of nanomaterials as well as fabrication and characterization of thin film devices.
LernzielGain the knowledge and practical experience to begin research with organic or nanostructured materials and understand the key challenges in this rapidly emerging field.
Inhalt0-Dimensional Excitonic Materials (organic molecules and colloidal quantum dots)

Energy Levels and Excited States (singlet and triplet states, optical absorption and luminescence).

Excitonic and Polaronic Processes (charge transport, Dexter and Förster energy transfer, and exciton diffusion).

Devices (photodetectors, solar cells, and light emitting devices).
LiteraturLecture notes and reading assignments from current literature to be posted on website.
227-0662-10LOrganic and Nanostructured Optics and Electronics (Project) Information Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
W3 KP2AV. Wood
KurzbeschreibungThis course examines the optical and electronic properties of excitonic materials that can be leveraged to create thin-film light emitting devices and solar cells. Laboratory sessions provide students with experience in synthesis and optical characterization of nanomaterials as well as fabrication and characterization of thin film devices.
LernzielGain the knowledge and practical experience to begin research with organic or nanostructured materials and understand the key challenges in this rapidly emerging field.
Inhalt0-Dimensional Excitonic Materials (organic molecules and colloidal quantum dots)

Energy Levels and Excited States (singlet and triplet states, optical absorption and luminescence).

Excitonic and Polaronic Processes (charge transport, Dexter and Förster energy transfer, and exciton diffusion).

Devices (photodetectors, solar cells, and light emitting devices).
LiteraturLecture notes and reading assignments from current literature to be posted on website.
Voraussetzungen / BesonderesAdmission is conditional to passing 227-0662-00L Organic and Nanostructured Optics and Electronics (Course)
227-0664-00LTechnology and Policy of Electrical Energy StorageW3 KP2GV. Wood, T. Schmidt
KurzbeschreibungWith the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence and growing the use of renewables, developing & implementing energy storage solutions for electric mobility & grid stabilization represent a key technology & policy challenge. This course uses lithium ion batteries as a case study to understand the interplay between technology, economics, and policy.
LernzielThe students will learn of the complexity involved in battery research, design, production, as well as in investment, economics and policy making around batteries. Students from technical disciplines will gain insights into policy, while students from social science backgrounds will gain insights into technology.
InhaltWith the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence, and integrating renewables on the electric grid, developing and implementing energy storage solutions for electric mobility and grid stabilization represent a key technology and policy challenge. The class will focus on lithium ion batteries since they are poised to enter a variety of markets where policy decisions will affect their production, adoption, and usage scenarios. The course considers the interplay between technology, economics, and policy.

* intro to energy storage for electric mobility and grid-stabilization
* basics of battery operation, manufacturing, and integration
* intro to the role of policy for energy storage innovation & diffusion
* discussion of complexities involved in policy and politics of energy storage
SkriptMaterials will be made available on the website.
LiteraturMaterials will be made available on the website.
Voraussetzungen / BesonderesStrong interest in energy and technology policy.
227-0669-00LChemistry of Devices and Technologies Belegung eingeschränkt - Details anzeigen
Limited to 30 participants.
W4 KP1V + 2UM. Yarema
KurzbeschreibungThe course covers basics of chemistry and material science, relevant for modern devices and technologies. The course consists from lecture, laboratory, and individual components. Students accomplish individual projects, in which they study and evaluate a chosen technology from chemistry and materials viewpoints.
LernzielThe course brings relevant chemistry knowledge, tailored to the needs of electrical engineering students. Students will gain understanding of the basic concepts of chemistry and a chemist's intuition through hands-on workshops that combine tutorials and laboratory sessions as well as guidance through individual projects that require interdisciplinary and critical thinking.
Students will learn which materials, reactions, and device fabrication processes are important for nowadays technologies and products. They will gain important knowledge of state-of-the-art technologies from materials and fabrication viewpoints.
InhaltStudents will spend 3h per week in the tutorials and practical sessions and additional 4-6h per week working on individual projects.
The goal of the individual student's project is to understand the chemistry related to the manufacture and operation of a specific device or technology (to be chosen from the list of projects). To ensure continued learning throughout the semester, individual projects are evaluated by three interim project reports and by 10 min final presentation.
LiteraturLecture notes will be made available on the website.
227-0707-00LOptimization Methods for EngineersW3 KP2GJ. Smajic
KurzbeschreibungErste Semesterhälfte: Einführung in die wichtigsten Methoden der numerischen Optimierung mit Schwerpunkt auf stochastischen Verfahren wie genetische Algorithmen, evolutionäre Strategien, etc.
Zweite Semesterhälfte: Jeder Teilnehmer implementiert ein ausgewähltes Optimierungsverfahren und wendet es auf ein praktisches Problem an.
LernzielNumerische Optimierung spielt eine zunehmende Rolle sowohl bei der Entwicklung technischer Produkte als auch bei der Entwicklung numerischer Methoden. Die Studenten sollen lernen, geeignete Verfahren auszuwählen, weiter zu entwickeln und miteinander zu kombinieren um so praktische Probleme effizient zu lösen.
InhaltTypische Optimierungsprobleme und deren Tücken werden skizziert. Bekannte deterministische Suchalgorithmen, Verfahren der kombinatorische Minimierung und evolutionäre Algorithmen werden vorgestellt und miteinander verglichen. Da Optimierungsprobleme im Ingenieurbereich oft sehr komplex sind, werden Wege zur Entwicklung neuer, effizienter Verfahren aufgezeigt. Solche Verfahren basieren oft auf einer Verallgemeinerung oder einer Kombination von bekannten Verfahren. Zur Veranschaulichung werden aus dem breiten Anwendungsbereich numerischer Optimierungsverfahren verschiedenartigste praktische Probleme herausgegriffen
SkriptPDF of a short skript (39 pages) plus the view graphs are provided
Voraussetzungen / BesonderesVorlesung nur in der 1. Semesterhälfte, Übungen in Form kleiner Projekte in der 2. Semesterhälfte, Präsentation der Resultate in der letzten Semesterwoche.
151-0172-00LMicrosystems II: Devices and Applications Information W6 KP3V + 3UC. Hierold, C. I. Roman
KurzbeschreibungThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS). They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.
LernzielThe students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS), basic electronic circuits for sensors, RF-MEMS, chemical microsystems, BioMEMS and microfluidics, magnetic sensors and optical devices, and in particular to the concepts of Nanosystems (focus on carbon nanotubes), based on the respective state-of-research in the field. They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products.

During the weekly 3 hour module on Mondays dedicated to Übungen the students will learn the basics of Comsol Multiphysics and utilize this software to simulate MEMS devices to understand their operation more deeply and optimize their designs.
InhaltTransducer fundamentals and test structures
Pressure sensors and accelerometers
Resonators and gyroscopes
Acoustic transducers and energy harvesters
Thermal transducers and energy harvesters
Optical and magnetic transducers
Chemical sensors and biosensors, microfluidics and bioMEMS
Nanosystem concepts
Basic electronic circuits for sensors and microsystems
SkriptHandouts (on-line)
151-0620-00LEmbedded MEMS Lab
Number of participants limited to 20.
W5 KP3PC. Hierold, M. Haluska
KurzbeschreibungPractical course: Students are introduced to the process steps required for the fabrication of MEMS (Micro Electro Mechanical System) and carry out the fabrication and testing steps in the clean rooms themselves. Additionally, they learn the requirements for working in clean rooms. Processing and characterization will be documented and analyzed in a final report.
LernzielStudents learn the individual process steps that are required to make a MEMS (Micro Electro Mechanical System). Students carry out the process steps themselves in laboratories and clean rooms. Furthermore, participants become familiar with the special requirements (cleanliness, safety, operation of equipment and handling hazardous chemicals) of working in the clean rooms and laboratories. The entire production, processing, and characterization of the MEMS is documented and evaluated in a final report.
InhaltWith guidance from a tutor, the individual silicon microsystem process steps that are required for the fabrication of an accelerometer are carried out:
- Photolithography, dry etching, wet etching, sacrificial layer etching, various cleaning procedures
- Packaging and electrical connection of a MEMS device
- Testing and characterization of the MEMS device
- Written documentation and evaluation of the entire production, processing and characterization
SkriptA document containing theory, background and practical course content is distributed in the informational meeting.
LiteraturThe document provides sufficient information for the participants to successfully participate in the course.
Voraussetzungen / BesonderesParticipating students are required to attend all scheduled lectures and meetings of the course.

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory portion of the course.

This master's level course is limited to 20 students per semester for safety and efficiency reasons.
If there are more than 20 students registered, we regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Dual, Hierold, Koumoutsakos, Nelson, Norris, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide with respect to (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.
Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.
  •  Seite  1  von  1