Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Rechnergestützte Wissenschaften Bachelor Information
Für alle Studienreglemente
Vertiefungsgebiete
Physik
NummerTitelTypECTSUmfangDozierende
402-0812-00LComputational Statistical Physics Information W8 KP2V + 2UM. Krstic Marinkovic
KurzbeschreibungSimulationsmethoden in der statistischen Physik. Klassische Monte-Carlo-Simulationen: finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Anwendung auf Boltzmann-Maschinen. Simulation von Nichtgleichgewichtssystemen.

Molekulardynamik-Simulationen: langreichweitige Wechselwirkungen, Ewald-Summation, diskrete Elemente, Parallelisierung.
LernzielDie Vorlesung ist eine Vertiefung von Simulationsmethoden in der statistischen Physik, und daher ideal als Fortführung der Veranstaltung "Introduction to Computational Physics" des Herbstsemesters. Im ersten Teil lernen Studenten die folgenden Methoden anzuwenden: Klassische Monte-Carlo-Simulationen, finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Ausserdem lernen Studenten die Anwendung der Methoden aus der Statistischen Physik auf Boltzmann-Maschinen kennen und lernen wie Nichtgleichgewichtssysteme simuliert werden.

Im zweiten Teil wenden die Studenten Methoden zur Simulation von Molekulardynamiken an. Das beinhaltet unter anderem auch langreichweitige Wechselwirkungen, Ewald-Summation und diskrete Elemente.
InhaltSimulationsmethoden in der statistischen Physik. Klassische Monte-Carlo-Simulationen: finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Anwendung auf Boltzmann-Maschinen. Simulation von Nichtgleichgewichtssystemen. Molekulardynamik-Simulationen: langreichweitige Wechselwirkungen, Ewald-Summation, diskrete Elemente, Parallelisierung.
SkriptSkript und Folien sind online verfügbar und werden bei Bedarf verteilt.
LiteraturLiteraturempfehlungen und Referenzen sind im Skript enthalten.
Voraussetzungen / BesonderesGrundlagenwissen in der Statistischen Physik, Klassischen Mechanik und im Bereich der Rechnergestützten Methoden ist empfohlen.
402-0810-00LComputational Quantum Physics
Fachstudierende UZH müssen das Modul PHY522 direkt an der UZH buchen.
W8 KP2V + 2UM. H. Fischer
KurzbeschreibungThis course provides an introduction to simulation methods for quantum systems. Starting from the one-body problem, a special emphasis is on quantum many-body problems, where we cover both approximate methods (Hartree-Fock, density functional theory) and exact methods (exact diagonalization, matrix product states, and quantum Monte Carlo methods).
LernzielThrough lectures and practical programming exercises, after this course:
Students are able to describe the difficulties of quantum mechanical simulations.
Students are able to explain the strengths and weaknesses of the methods covered.
Students are able to select an appropriate method for a given problem.
Students are able to implement basic versions of all algorithms discussed.
SkriptA script for this lecture will be provided.
LiteraturA list of additional references will be provided in the script.
Voraussetzungen / BesonderesA basic knowledge of quantum mechanics, numerical tools (numerical differentiation and integration, linear solvers, eigensolvers, root solvers, optimization), and a programming language (for the teaching assignments, you are free to choose your preferred one).
227-0161-00LMolecular and Materials Modelling Information W4 KP2V + 2UD. Passerone, C. Pignedoli
KurzbeschreibungThe course introduces the basic techniques to interpret experiments with contemporary atomistic simulation, including force fields or ab initio based molecular dynamics and Monte Carlo. Structural and electronic properties will be simulated hands-on for realistic systems.
The modern methods of "big data" analysis applied to the screening of chemical structures will be introduced with examples.
LernzielThe ability to select a suitable atomistic approach to model a nanoscale system, and to employ a simulation package to compute quantities providing a theoretically sound explanation of a given experiment. This includes knowledge of empirical force fields and insight in electronic structure theory, in particular density functional theory (DFT). Understanding the advantages of Monte Carlo and molecular dynamics (MD), and how these simulation methods can be used to compute various static and dynamic material properties. Basic understanding on how to simulate different spectroscopies (IR, X-ray, UV/VIS). Performing a basic computational experiment: interpreting the experimental input, choosing theory level and model approximations, performing the calculations, collecting and representing the results, discussing the comparison to the experiment.
Inhalt-Classical force fields in molecular and condensed phase systems
-Methods for finding stationary states in a potential energy surface
-Monte Carlo techniques applied to nanoscience
-Classical molecular dynamics: extracting quantities and relating to experimentally accessible properties
-From molecular orbital theory to quantum chemistry: chemical reactions
-Condensed phase systems: from periodicity to band structure
-Larger scale systems and their electronic properties: density functional theory and its approximations
-Advanced molecular dynamics: Correlation functions and extracting free energies
-The use of Smooth Overlap of Atomic Positions (SOAP) descriptors in the evaluation of the (dis)similarity of crystalline, disordered and molecular compounds
SkriptA script will be made available and complemented by literature references.
LiteraturD. Frenkel and B. Smit, Understanding Molecular Simulations, Academic Press, 2002.

M. P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Oxford University Press 1990.

C. J. Cramer, Essentials of Computational Chemistry. Theories and Models, Wiley 2004

G. L. Miessler, P. J. Fischer, and Donald A. Tarr, Inorganic Chemistry, Pearson 2014.

K. Huang, Statistical Mechanics, Wiley, 1987.

N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College 1976.

E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press 2010.
  •  Seite  1  von  1