Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Chemieingenieurwissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2006)
6. Semester
Obligatorische Fächer
Prüfungsblock Katalyse und Heterogene Verfahren
NummerTitelTypECTSUmfangDozierende
529-0192-00LIndustrial Chemistry
Ersatz für 529-0502-00L Catalysis
O4 KP3GJ. A. van Bokhoven, M. Ranocchiari
KurzbeschreibungIn der Vorlesung wird beschrieben, wie die wichtigsten Chemikalien und Zwischenprodukte sowohl aus chemischer Sicht als auch aus der Perspektive chemischer Technologie/Verfahrenstechnik hergestellt werden. Reaktionsmechanismen bis zum Reaktordesign werden abgedeckt.
LernzielVermitteln der Grundlagen der Reaktionsmechanismen und Reaktordesign der wichtigsten Chemikalien und Zwischenprodukte.
InhaltDie allermeisten Zwischenprodukte und Chemikalien stammen aus Kohle, Öl oder Gas. Die Entwicklung dieser Prozesse über einen Zeitraum von mehr als hundert Jahren hat zu faszinierenden chemischen Prozessen geführt. In der Vorlesung wird beschrieben, wie die wichtigsten Chemikalien und Zwischenprodukte sowohl aus chemischer Sicht als auch aus der Perspektive chemischer Technologie/Verfahrenstechnik hergestellt werden. Reaktionsmechanismen bis zum Reaktordesign werden abgedeckt.
SkriptZusätzliche Unterlagen werden auf der Webseite publiziert:
http://www.vanbokhoven.ethz.ch/education.html
LiteraturHans-Jürgen Arpe, Industrial Organic Chemistry, 5th Edition, Wyley-VCH, 2010

G. P. Chiusoli, P. M. Maitlis, Metal-catalysis in Industrial Organic Processes, RSC Publishing, 2008
529-0633-00LHeterogeneous Reaction EngineeringO4 KP3GJ. Pérez-Ramírez, C. Mondelli
KurzbeschreibungHeterogeneous Reaction Engineering equips students with tools essential for the optimal development of heterogeneous processes. Integrating concepts from chemical engineering and chemistry, students will be introduced to the fundamental principles of heterogeneous reactions and will develop the necessary skills for the selection and design of various types of idealized reactors.
LernzielAt the end of the course the students will understand the basic principles of catalyzed and uncatalyzed heterogeneous reactions. They will know models to represent fluid-fluid and fluid-solid reactions; how to describe the kinetics of surface reactions; how to evaluate mass and heat transfer phenomena and account for their impact on catalyst effectiveness; the principle causes of catalyst deactivation; and reactor systems and protocols for catalyst testing.
InhaltThe following components are covered:
- Fluid-fluid and fluid-solid heterogeneous reactions.
- Kinetics of surface reactions.
- Mass and heat transport phenomena.
- Catalyst effectiveness.
- Catalyst deactivation.
- Strategies for catalyst testing.

These aspects are exemplified through modern examples.
For each core topic, assignments are distributed, corrected, and discussed.
The course also features an industrial lecture.
SkriptScript and booklet of exercises as well as links to the Zoom recordings of the lectures are available in the corresponding Moodle course.
LiteraturH. Scott Fogler: Elements of Chemical Reaction Engineering, Prentice Hall, New Jersey, 1992

O. Levenspiel: Chemical Reaction Engineering, 3rd edition, John Wiley & Sons, New Jersey, 1999

Further relevant sources are given during the course.
151-0926-00LSeparation Process Technology IO4 KP3GM. Mazzotti, A. Bardow
KurzbeschreibungEmpirische Berechnungsmethoden, basierend auf dem Stoffaustausch und den Phasengleichgewichten von Gas/Flüssig- und Flüssig/Flüssig-Systemen mit idealer und nicht-idealer Thermodynamik.
LernzielEmpirische Berechnungsmethoden, basierend auf dem Stoffaustausch und den Phasengleichgewichten von Gas/Flüssig- und Flüssig/Flüssig-Systemen mit idealer und nicht-idealer Thermodynamik.
InhaltMethoden zur nicht-empirischen Auslegung von Gleichgewichtstrennstufen idealer und nichtidealer Systeme, basierend auf Stoffübergangsphänomenen und dem Phasengleichgewicht. Die betrachteten Themen: Einführung in die Trennprozesstechnologie; Gas/Flüssig- und Flüssig/Flüssig-Phasengleichgewichte; Flash Verdampfung von Zwei- und Mehrstoffsystemen; Gleichgewichtsstufen und deren Kaskadenschaltungen; Gasabsorption und Strippingprozesse; Kontinuierliche Destillation: Auslegungsmethoden für Zwei- und Mehrstoffsysteme, Apparate für kontinuierliche Prozessführung, azeotrope Destillation, Apparate für Gas/Flüssig-Prozesse.; Flüssig/Flüssig-Extraktion. Die Vorlesung wird durch eine web-basierte interaktive Lernumgebung (HyperTVT) ergänzt.
SkriptVorlesung Notizien
LiteraturTreybal "Mass-transfer operations" oder Seader/Henley "Separation process principles" oder Wankat "Equilibrium stage separations" oder Weiss/Militzer/Gramlich "Thermische Verfahrenstechnik"
Voraussetzungen / BesonderesVoraussetzungen: Stoffaustausch

Die Vorlesung wird durch eine web-basierte interaktive Lernumgebung (HyperTVT) ergänzt:
http://www.spl.ethz.ch/
Prüfungsblock Prozesstechnik
NummerTitelTypECTSUmfangDozierende
529-0580-00LSicherheit, Umweltaspekte und Risikomanagement Information O4 KP3GS. Kiesewetter, K. Timmel
KurzbeschreibungÜberblick über den Einfluss betrieblicher / prozess- und produktbezogener Aktivitäten auf die Umwelt und den Menschen, über erforderliche Risikoabschätzungen und Sicherheitsvorkehrungen sowie Hinweise auf die Schweizer Gesetzgebung (Umwelt/Arbeitssicherheit)
LernzielGrundverständnis für die Auswirkungen betrieblicher Tätigkeiten auf Mensch und Umwelt; Schärfung des Bewusstseins für Risiken und Sicherheitsbelange
InhaltRisikoanalysen – wozu braucht es eine Risikoanalyse? Kennenlernen der Hilfsmittel zur Erarbeitung einer Risikoanalyse, Besprechung konkreter Beispiele; Hinweise zu weiteren Hilfsmitteln; Hinweise gesetzliche Grundlagen , Bereiche Umwelt und Arbeitssicherheit. Aufbau einer Sicherheitsorganisation in einem Unternehmen, an einer Hochschule.
SkriptWird bei der ersten Vorlesung zur Verfügung gestellt.
LiteraturErgänzungsliteratur wird im Skript angegeben.
Voraussetzungen / BesonderesIm Rahmen der Vorlesung wird eine Gruppenarbeit im Sinne eines Leistungselementes durchgeführt, die benotet wird. Die Schlussnote setzt sich wie folgt zusammen: Gruppenarbeit (Gewichtung 30%) und schriftlicher Prüfung (70%)
529-0031-00LRegelungstechnikO3 KP3GR. Grass
KurzbeschreibungPrinzip der Regelung. Modellierung dynamischer Systeme. Zustandsraumdarstellung, Linearisierung. Laplace Transformation, Systemantworten. Regelkreis - Idee der Rückführung. PID-Regler. Stabilität, Routh-Hurwitz Kriterium, Frequenzgang, Bode-Diagramm. Störgrössenaufschaltung, Kaskadenregelung. Mehrvariablensysteme. Anwendungsbeispiele für die Regelung von Reaktoren.
LernzielVermittlung von fachübergreifenden Konzepten und Methoden zur mathematischen Beschreibung und Analyse von dynamischen Systemen. Konzept der Rückführung, Entwurf von Regelungen für Eingrössen- und Mehrgrössenstrecken.
InhaltProzessautomatisierung. Prinzip der Regelung. Modellierung dynamischer Systeme - Beispiele. Zustandsraumdarstellung, Linearisierung, analytische/numerische Lösung. Laplace Transformation, Systemantworten für Systeme 1. und 2. Ordnung. Regelkreis - Idee der Rückführung. PID-Regler, Ziegler-Nichols Einstellung. Stabilität, Routh-Hurwitz Kriterium. Frequenzgang, Bode-Diagramm. Feedforward Compensation/Störgrössenaufschaltung, Kaskadenregelung. Mehrvariablensysteme (Uebertragungsmatrix, Zustandsraumdarstellung), Mehrschlaufenregelung, Problem der Kopplung, Relative Gain Array, Entkoppelungskompensator. Sensitivität auf Modellunsicherheit. Anwendungsbeispiele für die Regelung von Reaktoren und Destillationskolonnen.
SkriptLink

Zugang zu Online-Content und Vorlesungsübertragung über RT-FS21.slack.com
Literatur- "Feedback Control of Dynamical Systems", 4th Edition, by G.F. Franklin, J.D. Powell and A. Emami-Naeini; Prentice Hall, 2002.
- "Process Dynamics & Control", by D.E. Seborg, T.F. Edgar and D.A. Mellichamp; Wiley 1989.
- "Process Dynamics, Modelling & Control", by B.A. Ogunnaike and W.H. Ray;
Oxford University Press 1994.
Voraussetzungen / BesonderesAnalysis II , Lineare Algebra.

MATLAB wird zur Systemanalyse und Simulation eingesetzt.
151-0940-00LModelling and Mathematical Methods in Process and Chemical EngineeringO4 KP3GM. Mazzotti
KurzbeschreibungEinführung in die Modellierungstechniken und mathematischen Methoden für nichtnumerische Lösungen von Gleichungen in der chemischen Verfahrenstechnik.
LernzielEinführung in die Modellierungstechniken und mathematischen Methoden für nichtnumerische Lösungen von Gleichungen in der chemischen Verfahrenstechnik.
InhaltFormulierung und Bearbeitung von mathematischen Modellen, Auswertung und Präsentation von Resultaten, Matrizen und deren Anwendung, Nichtlineare, gewöhnliche Differentialgl. erster Ordnung u. Stabilitätstheorem, Partielle Differenzialgleichungen erster Ordnung, Einführung in die Störungstheorie, Fallstudien: Mehrdeutigkeiten und Stabilität eines kontinuierlichen Rührkessels; Rückstandskurvendiagramme für einfache Destillation; Dynamik von Chromatographiekolonnen; Kinetik und Dynamik von oszillierenden Reaktionen.
Skriptkein Skript
LiteraturA. Varma, M. Morbidelli, "Mathematical methods in chemical engineering," Oxford University Press (1997)
H.K. Rhee, R. Aris, N.R. Amundson, "First-order partial differential equations. Vol. 1," Dover Publications, New York (1986)
R. Aris, "Mathematical modeling: A chemical engineer’s perspective," Academic Press, San Diego (1999)
  •  Seite  1  von  1