Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Maschineningenieurwissenschaften Master Information
Kernfächer
Design, Computation, Product Development & Manufacturing
Die unter der Kategorie “Kernfächer” gelisteten Fächer sind empfohlen. Andere Kurse sind nicht ausgeschlossen, benötigen jedoch die Zustimmung des Tutors/der Tutorin.
NummerTitelTypECTSUmfangDozierende
151-0548-00LManufacturing of Polymer Composites Belegung eingeschränkt - Details anzeigen
Number of participants limited to 32.
W6 KP3G + 2PP. Ermanni
KurzbeschreibungThe course covers polymer and fibres, textile technologies, process modelling and simulation, manufacturing technologies, quality control and testing, economic and ecological aspects. It combines lectures, tutorials and labs, to acquire a thorough knowledge and know-how in main aspects related to manufacturing technologies of composites.
LernzielTo provide a thorough knowledge in the field of manufacturing science and technology of advanced polymer composites.
InhaltIntroduction
Constituent materials (polymer materials, fibre, matrices)
Lab 1: constituent materials
Processing of thermoplastic fibre composites
Processing of thermoset fibre composites
Lab 2: Thermoplastics & Thermosets
Prepreg processing, Tooling /Out-of-Autoclave processing
Lab 3: Prepreg & OOA processing
Liquid Composite Moulding (LCM)
Lab 4: Liquid Composite Moulding
Textile Preforms
Design to Cost
SkriptScript and handouts are available in PDF-format on the CMASLab webpage.
LiteraturLiterature list is included in the script.
151-3202-00LProduct Development and Engineering Design Belegung eingeschränkt - Details anzeigen
Number of participants limited to 60.
W4 KP2GK. Shea, T. Stankovic
KurzbeschreibungThe course introduces students to the product development process. In a team, you will explore the early phases of conceptual development and product design, from ideation and concept generation through to hands-on prototyping. This is an opportunity to gain product development experience and improve your skills in prototyping and presenting your product ideas. The project topic changes each year.
LernzielThe course introduces you to the product development process and methods in engineering design for: product planning, user-centered design, creating product specifications, ideation including concept generation and selection methods, material selection methods and prototyping. Further topics include design for manufacture and design for additive manufacture. You will actively apply the process and methods learned throughout the semester in a team on a product development project including prototyping.
InhaltWeekly topics accompanying the product development project include:
1 Introduction to Product Development and Engineering Design
2 Product Planning and Social-Economic-Technology (SET) Factors
3 User-Centered Design and Product Specifications
4 Concept Generation and Selection Methods
5 System Design and Embodiment Design
6 Prototyping and Prototype Planning
7 Material Selection in Engineering Design
8 Design for Manufacture and Design for Additive Manufacture
Skriptavailable on Moodle
LiteraturUlrich, Eppinger, and Yang, Product Design and Development. 7th ed., McGraw-Hill Education, 2020.

Cagan and Vogel, Creating Breakthrough Products: Revealing the Secrets that Drive Global Innovation, 2nd Edition, Pearson Education, 2013.
Voraussetzungen / BesonderesAlthough the course is offered to ME (BSc and MSc) and CS (BSc and MSc) students, priority will be given to ME BSc students in the Focus Design, Mechanics, and Materials if the course is full.
151-3204-00LCoaching Innovations-ProjekteW2 KP2VR. P. Haas
KurzbeschreibungErfahrungen im coachen von Ingenieur-Teams lernen und einüben. Jeder Kursteilnehmende coacht selbst mehrere Teams der Innovationsprojekte (151-300-00L). Damit werden Coaching-Fähigkeiten und Wissen im Bereich der Produktentwicklung-Methoden professionalisiert.
Lernziel- Kritisches Denken und begründetes Beurteilen
- Grundkenntnisse der Rolle und Denkweise eines Coaches
- Erfahrung der Herausfoderungen in technischen Projekten und Design-Teams
- Entwicklung der persönlichen Fertigkeiten zur Anwendung und Schulen von Produktentwicklungsmethoden
- Kenntnisse und Fachwissen über anzuwendende Methoden
- Reflektion und Erfahrungsaustausch über persönliche Coaching-Situationen
- Inspiration und Lernen aus guten Beispielen bezüglich Organisation und Team Management
- Handeln unter Unsicherheit
InhaltHier sind die Themen und Daten für die Live Sessions
jeweils Montags, 16:15-18:00 Uhr.
Zoom-Link wird auf der Moodle-Kursseite publiziert:
Link

22.02.2021: Base Camp, Experience exchange
01.03.2021: Course intro, Coaching roles & Virtual coaching
08.03.2021: Active listening & Giving and receiving feedback
15.03.2021: Coaching model GROW & Asking questions
22.03.2021: Working with hypothesis & Motivation
29.03.2021: Reflection on individual coaching sessions 1
12.04.2021: 1:1 Coaching
26.04.2021: Team building & Psychological safety
03.05.2021: Facilitating conflicts
10.05.2021: Reflection on individual coaching sessions 2
17.05.2021: Reflexivity & Reviews of your interventions

Für jede Live Session wird auf Moodle vorbereitendes Material zur Verfügung gestellt. Dies ermöglicht den Teilnemer*innen gut vorbereitet zu den Live-Sessions zu erscheinen.
Voraussetzungen / BesonderesNur für Teilnehmer (Bachelor-Studenten, Master-Studenten) , die Hilfsassistenten im Innovationsprojekt sind.
151-3210-00LStructural Optimization Belegung eingeschränkt - Details anzeigen
Number of participants limited to 45.
W4 KP4GT. Stankovic
KurzbeschreibungThe course covers fundamentals of structural optimization in terms of the optimal design of topology, shape, size and material for discrete and continuous representations of structures. It develops skills to formally state and model structural design tasks as optimization problems and select appropriate methods to solve them.
LernzielThe course covers fundamentals of structural optimization in terms of the optimal design of topology, shape, size and material for discrete and continuous representations of structures. After taking the course students will be able to express structural design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the foundations of the state-of-the art structural optimization methods in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.
Inhalt- Topology optimization of truss structures
- Topology optimization by distribution of isotropic material
- Structural optimization for additive manufacture
SkriptAvailable on Moodle.
LiteraturSuggested literature:
Haftka, R. T., & Gürdal, Z. (2012). Elements of structural optimization (Vol. 11). Springer Science & Business Media.
Bendsøe, M. P., & Sigmund, O. (2004). Optimization of structural topology, shape, and material (Vol. 414). Berlin etc: Springer.
Voraussetzungen / BesonderesThere are no direct prerequisites for taking this course.
However, prior knowledge regarding the fundamentals of mathematical programming methods and structural analysis is advisable.
263-5806-00LComputational Models of Motion Information W8 KP2V + 2U + 3AS. Coros, M. Bächer, B. Thomaszewski
KurzbeschreibungThis course covers fundamentals of physics-based modelling and numerical optimization from the perspective of character animation and robotics applications. The methods discussed in class derive their theoretical underpinnings from applied mathematics, control theory and computational mechanics, and they will be richly illustrated using examples ranging from locomotion controllers and crowd simula
LernzielStudents will learn how to represent, model and algorithmically control the behavior of animated characters and real-life robots. The lectures are accompanied by programming assignments (written in C++) and a capstone project.
InhaltOptimal control and trajectory optimization; multibody systems; kinematics; forward and inverse dynamics; constrained and unconstrained numerical optimization; mass-spring models for crowd simulation; FEM; compliant systems; sim-to-real; robotic manipulation of elastically-deforming objects.
Voraussetzungen / BesonderesExperience with C++ programming, numerical linear algebra and multivariate calculus. Some background in physics-based modeling, kinematics and dynamics is helpful, but not necessary.
  •  Seite  1  von  1