Search result: Catalogue data in Autumn Semester 2020

Computer Science Master Information
Master Studies (Programme Regulations 2020)
Majors
Major in Visual and Interactive Computing
Core Courses
NumberTitleTypeECTSHoursLecturers
252-0543-01LComputer Graphics Information W8 credits3V + 2U + 2AM. Gross, M. Papas
AbstractThis course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.
ObjectiveAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
ContentThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.
Lecture notesno
LiteratureBooks:
High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
Multiple view geometry in computer vision
Physically Based Rendering: From Theory to Implementation
Prerequisites / NoticePrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
263-5902-00LComputer Vision Information W8 credits3V + 1U + 3AM. Pollefeys, S. Tang, V. Ferrari
AbstractThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
ObjectiveThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
ContentCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Prerequisites / NoticeIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
Elective Courses
NumberTitleTypeECTSHoursLecturers
252-0546-00LPhysically-Based Simulation in Computer GraphicsW5 credits2V + 1U + 1AV. da Costa de Azevedo, B. Solenthaler
AbstractThis lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
ObjectiveThis lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
ContentThe lecture covers topics in physically-based modeling,
such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.
Prerequisites / NoticeFundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.
  •  Page  1  of  1