Search result: Catalogue data in Autumn Semester 2020

Materials Science Master Information
Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional admission requirements.
NumberTitleTypeECTSHoursLecturers
327-0503-AALCeramics I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-3 credits6RM. Niederberger, T. Graule, A. R. Studart
AbstractIntroduction to ceramic processing
Learning objectiveThe aim is the understanding of the basic principles of ceramic processing.
ContentBasic chemical processes for powder production.
Liquid-phase synthesis methods.
Sol-Gel processes.
Classical crystallization theory.
Gas phase reactions.
Basics of the collidal chemistry for suspension preparation and control.
Characterization techniques for powders and colloids.
Shaping techniques for bulk components and thin films.
Sintering processes and microstructural control.
LiteratureBooks and references will be provided on the lecture notes.
327-0502-AALPolymers I Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-3 credits6RM. Kröger
AbstractPhysical foundations of single polymer molecules and interacting chains.
Learning objectiveThe course offers a modern approach to the understanding of universal static and dynamic properties of polymers.
ContentPolymer Physics:
1. Introduction to Polymer Physics, random walks, ideal chains
2. Semiflexible chains
3. Excluded volume
4. Lattice models
5. Scaling theory
6. Interacting chains
7. Structure factor and scattering experiments
8. Solvent and temperature effects
9. Phase separation and critical phenomena
10. Flory theory, self-consistent field theory
11. Dendrimers and polymer brushes
12. Blob model
13. Polymer mixtures
14. Block copolymers
15. Polymer gels, theory of rubber elasticity
16. Rouse and reptation models
17. Rheology, viscoelasticity
18. Computer experiments
19. Dynamic light scattering
20. Fokker-Planck equations, stochastic differential equations
Lecture noteshttp://www.polyphys.mat.ethz.ch/education/courses/polymers-I
Literature1. M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, 2003)
2. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)
3. M. Doi, Introduction to Polymer Physics (Oxford, Oxford, 2006)
4. M. Kröger, Models for polymeric and anisotropic liquids (Springer, Berlin, 2005)
Prerequisites / NoticeComputer experiments will use the simple MATLAB programming language and will be made available, if necessary or useful.
327-0606-AALPolymers II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-3 credits6RT. A. Tervoort, T.‑B. Schweizer
AbstractPrinciples of polymer technology
Learning objectiveTo obtain an understanding of the engineering aspects of structure and properties of solid polymers. Influence of polymer processing on properties of solid polymers.
Content1. Crystallization of semi-crystalline polymers
2. Glass transition of amorphous polymers
3. Mechanical properties of solid polymers
4. Examples of polymer processing
5. Laboratory exercises
Lecture notesIn consultation with the teachers (Tervoort and Schweizer).
LiteratureW. Kaiser, Kunststoffchemie für Ingenieure (Hanser, München, 2005)
327-0501-AALMetals I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-3 credits6RR. Spolenak
AbstractRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
Learning objectiveRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ContentDislocation theory:
Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
Hardening theory:
a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
b. particle hardening: case studies on aluminium-copper alloys
High temperature plasticity:
thermally activated glide
power-law creep
diffusional creep: Coble, Nabarro-Herring
deformation mechanism maps
Case studies in turbine blades
superplastizity
alloying effects
Lecture noteshttps://www.met.mat.ethz.ch/education/lect_scripts
LiteratureGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill
327-0612-AALMetals II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-3 credits6RR. Spolenak
AbstractIntroduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals.
Learning objectiveIntroduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals.
ContentThis course is devided into five parts:

A. Materials selection
Principles of materials properties maps
Introduction to the 'Materials selector' software package
Case studies

B. Light metals and alloys
Aluminium, magnesium, titanium
Properties and hardening mechanisms
Case studies in technological applications

C. Copper and its alloys

D. Iron and steel
The seven pros for steel
Fine grained steels, heat resistant steels
Steel and corrosion phenomena
Selection and application

E. High temperature alloys
Superalloys: iron, nickel, cobalt
Intermetallics: properties and application
Lecture noteshttp://www.met.mat.ethz.ch/education/lect_scripts
LiteratureGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Ashby/Jones, Engineering Materials 1 & 2, Pergamon Press
Ashby, Materials Selection in Mechanical Design, Pergamon Press
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Vieweg Verlag
Prerequisites / NoticePrerequisites: Metals I
327-0610-AALAdvanced Composites
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-3 credits6RF. J. Clemens, A. Winistörfer
AbstractIntroduction of basic concepts for composites with polymer- metal- and ceramic matrix composites; production and properties of composites reinforced with particles, whiskers, short and long fibres; selection criteria, case histories of applications, recycling, future perspectives, and basic concepts for adaptive and functional composites
Learning objectiveGain an insight into the diversity of opportunities to change the properties of composites, learn about the most important applications and processing techniques
Content1. Introduction
1.1 What are advanced composites?
1.2 What are materials by combination?
1.3 Are composites an idea of today?
1.4 Delphi foresight
1.5 Why composites?
1.6 References for chapter 1

2. Basic modules
2.1 Particles
2.2 Short fibres including whiskers
2.3 Long fibres
2.4 Matrix materials
2.4.1 Polymers
2.4.2 Metals
2.4.3 Ceramics and glasses
2.5 References for chapter 2

3. PMC: Polymer Matrix Composites
3.1 Historical background
3.2 Types of PMC-laminates
3.3 Production, processing and machining operation
3.4 Mechanics of reinforcement, microstructure, interfaces
3.5 Failure criteria
3.6 Fatigue behaviour of a multiply composite
3.7 Adaptive materials systems
3.8 References for chapter 3

4. MMC: Metal matrix composites
4.1 Introduction: Definitions, selection criteria und "design"
4.2 Types von MMCs - examples und typical properties
4.3 Mechanical and physical properties of MMCs - basics of design, influencing variables and damage mechanisms
4.4 Production processes
4.5 Micro structure / interfaces
4.6 machining operations for MMC
4.7 Applications
4.8 References for chapter 4

5. CMC: Ceramic Matrix Composites
5.1 Introduction and historical background
5.2 Modes of reinforcement
5.3 Production processes
5.4 Mechanisms of reinforcement
5.5 Micro structure / interfaces
5.6 Properties
5.7 Applications
5.8 Materials testing and quality assurance
5.9 References for chapter 5
Lecture notesThe script will be delivered at the begin of the semester
LiteratureThe script is including a comprehensive list of references
Prerequisites / NoticeBefore each class, students will get a handout. Students will get the power point presentation of each class by e-mail.

The exercises take place in small groups. It is their goal to deepen knowledge gained in the classes

written end of semester examination
  •  Page  1  of  1