Suchergebnis: Katalogdaten im Herbstsemester 2020
Chemie- und Bioingenieurwissenschaften Master | ||||||
Wahlfächer | ||||||
Modellierung und Simulation | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
151-0207-00L | Theory and Modeling of Reactive Flows | W | 4 KP | 3G | C. E. Frouzakis, I. Mantzaras | |
Kurzbeschreibung | The course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling. | |||||
Lernziel | Theory of combustion with numerical applications | |||||
Inhalt | The analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected. | |||||
Skript | Handouts | |||||
Voraussetzungen / Besonderes | NEW course | |||||
529-0004-01L | Classical Simulation of (Bio)Molecular Systems | W | 6 KP | 4G | P. H. Hünenberger, S. Riniker | |
Kurzbeschreibung | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||
Lernziel | Introduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations. | |||||
Inhalt | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||
Skript | Script booklet (copies of powerpoint slides) distributed at the first or second lecture. | |||||
Literatur | See: www.csms.ethz.ch/education/CSBMS | |||||
Voraussetzungen / Besonderes | Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark). For more information about the lecture: www.csms.ethz.ch/education/CSBMS | |||||
327-0508-00L | Simulationstechniken in der Materialwissenschaft Wird voraussichtlich im HS 2021 letztmals angeboten. | W | 4 KP | 2V + 2U | C. Ederer | |
Kurzbeschreibung | Einführung in für Materialwissenschaft relevante Simulationstechniken. Simulationsmethoden für Kontinua (Finite Differenzen, Finite Elemente), mesoskopische Methoden (zelluläre Automaten, mesoskopische Monte Carlo Methoden), mikroskopische Methoden (Molekulardynamik, Monte-Carlo Simulation, Dichtefunktionaltheorie). | |||||
Lernziel | Erlernen von Techniken, die in der rechnergestützten Physik für Materialien benötigt werden; Erlangen eines Überblicks, welche Simulationsmethoden für spezifische Fragestellungen sinnvoll sind; Entwicklung der Fähigkeit, materialwissenschaftliche Fragestellungen komplexer Systeme mit Hilfe des Computers zu behandeln. | |||||
Inhalt | - Modellierung und Simulationen in der Materialwissenschaft. - Simulationsmethoden für Kontinua (Finite Differenzen, Grundidee der finiten Elemente). - Mesoskopische Methoden (Zelluläre Automaten, Phasenfeld-Modelle, mesoskopische Monte Carlo Methoden). - Mikroskopische Methoden (Molekulardynamik, Monte Carlo Simulation für Vielteilchensysteme, Grundidee der Dichtefunktionaltheorie). | |||||
Literatur | - R. Lesar, Introduction to Computational Materials Science (Cambridge University Press 2013). - D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic Press 2002). - M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987). - D. Raabe, Computational Materials Science (Wiley-VCH 1998). |
- Seite 1 von 1