Suchergebnis: Katalogdaten im Herbstsemester 2020

Energy Science and Technology Master Information
Kernfächer
Mindestens je 2 Kernfächer pro Fachrichtung müssen erfolgreich abgelegt werden.
Die Teilnahme am Kurs des "Fächerübergreifenden Energiewesens" ist für alle Studierenden obligatorisch.
Energy Flows and Processes
NummerTitelTypECTSUmfangDozierende
151-0293-00LCombustion and Reactive Processes in Energy and Materials TechnologyW4 KP2V + 1U + 2AN. Noiray, K. Boulouchos, F.  Ernst
KurzbeschreibungThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.
LernzielThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.
InhaltReaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis.
SkriptNo script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

Teaching language, assignments and lecture slides in English
LiteraturJ. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

I. Glassman, Combustion, 3rd edition, Academic Press, 1996.
151-1633-00LEnergy Conversion
This course is intended for students outside of D-MAVT.
W4 KP3GI. Karlin, G. Sansavini
KurzbeschreibungThis course provides the students with an introduction to thermodynamics and heat transfer. Students shall gain basic understanding of energy, energy interactions, and various mechanisms of heat transfer as well as their link to energy conversion technologies.
LernzielThermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and psychrometry. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included.
Inhalt1. Thermodynamic systems, states and state variables
2. Properties of substances: Water, air and ideal gas
3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy
4. Second law of thermodynamics and entropy
5. Energy analysis of steam power cycles
6. Energy analysis of gas power cycles
7. Refrigeration and heat pump cycles
8. Nonideal gas equation of state and Joule-Thomson effect
9. Maximal work and exergy
10. Mixtures and psychrometry
11. Chemical reactions and combustion systems; chemical and phase equilibrium
SkriptLecture slides and supplementary documentation will be available online.
LiteraturThermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill
Voraussetzungen / BesonderesThis course is intended for students outside of D-MAVT.

Students are assumed to have an adequate background in calculus, physics, and engineering mechanics.
  •  Seite  1  von  1