Suchergebnis: Katalogdaten im Herbstsemester 2020
Biologie Master | ||||||
Wahlvertiefungen | ||||||
Wahlvertiefung: Biologische Chemie | ||||||
Wahlpflicht Masterkurse | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
529-0733-01L | Enzymes | W | 6 KP | 3G | D. Hilvert | |
Kurzbeschreibung | Vermittlung eines Überblicks über die Chemie von Enzymen, enzymkatalysierten Reaktionen, metabolischen Prozessen. | |||||
Lernziel | Vermittlung eines Überblicks über die Chemie von Enzymen, enzymkatalysierten Reaktionen, metabolischen Prozessen. | |||||
Inhalt | Prinzipien der enzymatischen Katalyse, Enzymkinetiken, Mechanismen enzymkatalysierter Reaktionen (Gruppentransferreaktion, Kohlenstoff-Kohlenstoff-Bindungsknüpfungen, Eliminierungen, Isomerisierungen und Umlagerungen), Kofaktorenchemie, Enzyme in der organischen Synthese und in der Naturstoffbiosynthese, katalytische Antikörper. | |||||
Skript | A script will not be handed out. | |||||
Literatur | General: T. Bugg, An Introduction to Enzyme and Coenzyme Chemistry, Blackwell Science Ltd., Oxford, 1997. In addition, citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||
529-0004-01L | Classical Simulation of (Bio)Molecular Systems | W | 6 KP | 4G | P. H. Hünenberger, S. Riniker | |
Kurzbeschreibung | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||
Lernziel | Introduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations. | |||||
Inhalt | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||
Skript | Script booklet (copies of powerpoint slides) distributed at the first or second lecture. | |||||
Literatur | See: www.csms.ethz.ch/education/CSBMS | |||||
Voraussetzungen / Besonderes | Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark). For more information about the lecture: www.csms.ethz.ch/education/CSBMS | |||||
529-0233-01L | Organic Synthesis: Methods and Strategies | W | 6 KP | 3G | E. M. Carreira | |
Kurzbeschreibung | The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy. | |||||
Lernziel | Extension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity. | |||||
Inhalt | Begriffe der Planung (Strategie und Taktik) der organischen Synthese, Retrosynthetische Analyse, Vertiefung der Beziehungen zwischen Struktur und Reaktivität im Zusammenhang mit der Synthese organischer Verbindungen zunehmender Komplexität. Vertiefung und Ergänzung der Kenntnisse synthetischer Methoden. | |||||
Literatur | K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH 1996. K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH 2003. K. C. Nicolaou, J. Chen, Classics in Total Synthesis III, Wiley-VCH 2011. | |||||
Voraussetzungen / Besonderes | OC I-IV | |||||
529-0243-01L | Transition Metal Catalysis: From Mechanisms to Applications | W | 6 KP | 3G | B. Morandi | |
Kurzbeschreibung | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint | |||||
Lernziel | Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop. | |||||
Inhalt | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis. | |||||
Skript | Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop. Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html | |||||
Literatur | Primary literature and review articles will be cited during the course. The following textbooks can provide useful support for the course: - Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books. - Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc. - Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books. - J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry. | |||||
Voraussetzungen / Besonderes | Required level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACIII Special requirement: each participant will have to come up with an independent research proposal to be presented orally (or handed in in written form) at the end of the semester. A dedicated workshop will be organized in the middle of the semester to introduce the students to proposal writing and presentation. | |||||
529-0041-00L | Moderne Massenspektroskopie, gekoppelte Analysenmethoden, Chemometrie | W | 6 KP | 3G | R. Zenobi, M. Badertscher, D. Günther, B. Hattendorf, P. Sinués Martinez-Lozano | |
Kurzbeschreibung | Moderne Massenspektrometrie, Kopplung von Trenn- mit Identifikationsmethoden, Speziierung, Oberflächenanalytische Methoden, und Chemometrie | |||||
Lernziel | Umfassende Kenntnis der vorgestellten analytischen Methoden und ihre Anwendungen in der Praxis. | |||||
Inhalt | Kopplung von Trenn- mit Identifikationsmethoden wie GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; Wichtigkeit der Speziierung. Moderne Massenspektrometrie: Flugzeit- und Ionen-Cyclotron-Resonanz-Massenspektrometrie, ICP-MS. Weiche Ionisationsmethoden, Desorptions-Methoden, Spray-Methoden. Oberflächenanalytische Methoden (ESCA, Auger, SIMS, Rastermikroskopie-Verfahren). Einsatz der Informatik zur Verarbeitung analytisch-chemischer Daten (Chemometrie). | |||||
Skript | Ein Skript wird zum Selbstkostenpreis abgegeben. | |||||
Literatur | Hinweise zur aktuellen Literatur werden in der Vorlesung bezw. im Skript gegeben | |||||
Voraussetzungen / Besonderes | Übungen sind in die Vorlesung integriert Voraussetzung: 529-0051-00 "Analytische Chemie I (3. Semester)" 529-0058-00 "Analytische Chemie II (4. Semester)" (oder äquivalent) | |||||
529-0240-00L | Chemical Biology - Peptides | W | 6 KP | 3G | H. Wennemers | |
Kurzbeschreibung | An advanced course on the synthesis, properties and function of peptides in chemistry and biology. | |||||
Lernziel | Knowledge of the synthesis, properties and function of peptides in chemistry and biology. | |||||
Inhalt | Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis. | |||||
Skript | Citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||
Literatur | Norbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002. | |||||
636-0108-00L | Biological Engineering and Biotechnology Attention: This course was offered in previous semesters with the number: 636-0003-00L "Biological Engineering and Biotechnology". Students that already passed course 636-0003-00L cannot receive credits for course 636-0108-00L. | W | 4 KP | 3V | M. Fussenegger | |
Kurzbeschreibung | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||
Lernziel | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||
Inhalt | 1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development. | |||||
Skript | Handout during the course. | |||||
551-1407-00L | RNA Biology Lecture Series I: Transcription & Processing & Translation | W | 4 KP | 2V | F. Allain, N. Ban, S. Jonas, U. Kutay, weitere Dozierende | |
Kurzbeschreibung | This course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation. | |||||
Lernziel | The students should obtain an understanding of these processes, which are at work during gene expression. | |||||
Inhalt | Transcription & 3'end formation ; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA. | |||||
Voraussetzungen / Besonderes | Basic knowledge of cell and molecular biology. | |||||
551-1409-00L | RNA Biology Lecture Series II: Non-coding RNAs: Biology and Therapeutics Findet dieses Semester nicht statt. | W | 4 KP | 2V | J. Hall, M. Stoffel, weitere Dozierende | |
Kurzbeschreibung | This course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases. | |||||
Lernziel | The students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions. | |||||
Inhalt | Micro RNAs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nucleic acid-based drugs; ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomeres; tRNA biology. http://www.nccr-rna-and-disease.ch/tiki-index.php?page=LectureSeries | |||||
Voraussetzungen / Besonderes | Basic knowledge of cell and molecular biology. | |||||
529-0241-10L | Advanced Methods and Strategies in Synthesis | W | 6 KP | 3G | J. W. Bode | |
Kurzbeschreibung | Advanced Modern Methods and Strategies in Synthesis | |||||
Lernziel | Kenntnis der modernen Methoden der asymmetrischen Synthese, der enantioselektiven Katalyse, und organische Reactionsmechanismus. | |||||
Inhalt | Aktuelle Trends in Methoden für und Annäherungen an die Synthese von komplexen Naturstoffen, Pharmazeutika und biologischen Molekülen, Fragmentkopplungs- und Schutzgruppenstrategien; chemische Ligation und Biomolekülsynthese; enantioselektive Katalyse einschließlich Ligandendesign und -optimierung; Kreuzkupplungsreaktionen voraktivierter Vorstufen; C-H-Aktivierung und Oxidationen; Bausteinsynthese mit chiralen Auxilliaren und Reagenzien; neue Konzepte in der asymmetrischen Katalyse. Analyse von Schlüsselliteratur inklusive der Erkennung von Trends, bedeutenden Präzedenzfällen und neu aufkommenden Gebieten wird hervorgehoben. | |||||
Skript | will be provided in class and online | |||||
Literatur | Suggesting Textbooks 1. Walsh and Kozlowski, Fundamentals of Asymmetric Catalysis, 1st Ed., University Science Books, 2009. 2. Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006. | |||||
227-0939-00L | Cell Biophysics | W | 6 KP | 4G | T. Zambelli | |
Kurzbeschreibung | A mathematical description is derived for a variety of biological phenomena at the molecular and cellular level applying the two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization). | |||||
Lernziel | Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life’s mechanisms. Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two concepts from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy. Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars of statistical mechanics: the maximization of entropy according to the Boltzmann’s law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior according to experimental data. By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation. | |||||
Inhalt | 1. Basics of theory of probability 2. Boltzmann's law 3. Entropy maximization and Gibbs free energy minimization 4. Two-state systems and the MWC model 5. Random walks and macromolecular structures 6. Electrostatics for salty solutions 7. Elasticity: fibers and membranes 8. Diffusion and crowding: cell signaling 9. Molecular motors 10. Action potential: Hodgkin-Huxley model 11. Photosynthesis 12. Gene regulation 13. Development: Turing patterns 14. Sequences and evolution | |||||
Literatur | - Statistical Mechanics: K. Dill, S. Bromberg, Molecular Driving Forces, 2nd Edition, Garland Science, 2010. - Biophysics: R. Phillips, J. Kondev, J. Theriot, H. Garcia, Physical Biology of the Cell, 2nd Edition, Garland Science, 2012. | |||||
Voraussetzungen / Besonderes | Participants need a good command of differentiation and integration of a function with one or more variables (calculus) as well as of Newton's and Coulomb's laws (basics of mechanics and electrostatics). Notions of vectors in 2D and 3D are beneficial. Theory and corresponding exercises are merged together during the classes. |
- Seite 1 von 1