Suchergebnis: Katalogdaten im Herbstsemester 2020

Maschineningenieurwissenschaften Master Information
Kernfächer
Energy, Flows and Processes
Die unter der Kategorie “Kernfächer” gelisteten Fächer sind empfohlen. Andere Kurse sind nicht ausgeschlossen, benötigen jedoch die Zustimmung des Tutors/der Tutorin.
NummerTitelTypECTSUmfangDozierende
151-0105-00LQuantitative Flow VisualizationW4 KP3GT. Rösgen
KurzbeschreibungThe course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.
LernzielIntroduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.
InhaltFundamentals of optics, flow visualization and electronic image acquisition.
Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.
SkriptHandouts will be made available.
Voraussetzungen / BesonderesPrerequisites: Fluiddynamics I, Numerical Mathematics, programming skills.
Language: German on request.
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) I Information W4 KP4GP. Koumoutsakos, S. M. Martin
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
LernzielWith manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.
Inhalt1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods
SkriptLink
Class notes, handouts
Literatur• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes
Voraussetzungen / BesonderesStudents should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.
151-0109-00LTurbulent FlowsW4 KP2V + 1UP. Jenny
KurzbeschreibungInhalt
- Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung
LernzielDie Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt.
Inhalt- Eigenschaften laminarer, transitioneller und turbulenter Strömungen
- Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition
- Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem
- Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz
- Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht
- Wandturbulenz. Turbulente Grenzschicht, Kanalströmung
- Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell).
SkriptLecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch
LiteraturS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0125-00LHydrodynamics and CavitationW4 KP3GO. Supponen
KurzbeschreibungThis course builds on the foundations of fluid dynamics to describe hydrodynamic flows, with a focus on interfacial and surface tension effects, lubrication and surface waves, and provides an introduction to cavitation: theory, measurement techniques, and industrial and medical applications.
LernzielThe main learning objectives of this course are:
1. Identify and describe dominant effects in liquid fluid flows through physical modelling.
2. Explain tension, nucleation and phase-change in liquids.
3. Describe hydrodynamic cavitation and its consequences in physical terms.
4. Recognise experimental techniques and industrial and medical applications for cavitation.
InhaltThe course gives an overview on the following topics: hydrostatics, surface tension effects and capillarity, lubrication theory, surface waves, water hammer, tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial and medical applications, and measurement techniques.
SkriptClass notes and handouts
LiteraturLiterature will be provided in the course material.
Voraussetzungen / BesonderesFluid dynamics I & II or equivalent
151-0163-00LNuclear Energy ConversionW4 KP2V + 1UH.‑M. Prasser
KurzbeschreibungPhysikalische Grundlagen der Kernspaltung und der Kettenreaktion, thermische Auslegung, Aufbau, Funktion, und Betrieb von Kernreaktoren und Kernkraftwerken, Leichtwasserreaktoren und andere Reaktortypen, Konversion und Brüten
LernzielDie Studierenden erhalten einen Überblick über die Energieerzeugung in Kernkraftwerken, über Aufbau und Funktion der wichtigsten Reaktortypen sowie über den Kernbrennstoffkreislauf mit Schwerpunkt auf Leichtwasserreaktoren. Sie erhalten die mathematisch-physikalischen Grundlagen für quantitave Abschätzungen zu den wichtigsten Aspekten der Auslegung, des dynamischen Verhaltens und der Stoff- und Energieströme.
InhaltNeutronenphysikalische Grundlagen von Kernspaltung und Kettenreaktion. Thermodynamische Grundlagen von Kernreaktoren. Auslegung des Reaktorkerns. Einführung in das dynamische Verhalten von Kernreaktoren. Überblick über die wichtigsten Reaktortypen, Unterschied zwischen thermischen Reaktoren und Brutreaktoren. Aufbau und Betrieb von Kernkraftwerken mit Druck- und Siedewasserreaktoren, Rolle und Funktion der wichtigsten Sicherheitssysteme, Besonderheiten des Energieumwandlungsprozesses. Entwicklungstendenzen in der Reaktortechnik.
SkriptVorlesungsunterlagen werden verteilt. Vielfältiges Angebot an zusätzlicher Literatur und Informationen unter Link
LiteraturS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V.

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier
151-0182-00LFundamentals of CFD Methods Belegung eingeschränkt - Details anzeigen W4 KP3GA. Haselbacher
KurzbeschreibungThis course is focused on providing students with the knowledge and understanding required to develop simple computational fluid dynamics (CFD) codes to solve the incompressible Navier-Stokes equations and to critically assess the results produced by CFD codes. As part of the course, students will write their own code and verify and validate it systematically.
Lernziel1. Students know and understand basic numerical methods used in CFD in terms of accuracy and stability.
2. Students have a basic understanding of a typical simple CFD code.
3. Students understand how to assess the numerical and physical accuracy of CFD results.
Inhalt1. Governing and model equations. Brief review of equations and properties
2. Overview of basic concepts: Overview of discretization process and its consequences
3. Overview of numerical methods: Finite-difference and finite-volume methods
4. Analysis of spatially discrete equations: Consistency, accuracy, stability, convergence of semi-discrete methods
5. Time-integration methods: LMS and RK methods, consistency, accuracy, stability, convergence
6. Analysis of fully discrete equations: Consistency, accuracy, stability, convergence of fully discrete methods
7. Solution of one-dimensional advection equation: Motivation for and consequences of upwinding, Godunov's theorem, TVD methods, DRP methods
8. Solution of two-dimensional advection equation: Dimension-by-dimension methods, dimensional splitting, multidimensional methods
9. Solution of one- and two-dimensional diffusion equations: Implicit methods, ADI methods
10. Solution of one-dimensional advection-diffusion equation: Numerical vs physical viscosity, boundary layers, non-uniform grids
11. Solution of incompressible Navier-Stokes equations: Incompressibility constraint and consequences, fractional-step and pressure-correction methods
12. Solution of incompressible Navier-Stokes equations on unstructured grids
SkriptThe course is based mostly on notes developed by the instructor.
LiteraturLiterature: There is no required textbook. Suggested references are:
1. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed., Pearson Prentice Hall, 2007
2. R.H. Pletcher, J.C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer, 3rd ed., Taylor & Francis, 2011
Voraussetzungen / BesonderesPrior knowledge of fluid dynamics, applied mathematics, basic numerical methods, and programming in Fortran and/or C++ (knowledge of MATLAB is *not* sufficient).
151-0185-00LRadiation Heat Transfer Information W4 KP2V + 1UA. Steinfeld, P. Pozivil
KurzbeschreibungAdvanced course in radiation heat transfer
LernzielFundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.
Inhalt1. Introduction to thermal radiation. Definitions. Spectral and directional properties. Electromagnetic spectrum. Blackbody and gray surfaces. Absorptivity, emissivity, reflectivity. Planck's Law, Wien's Displacement Law, Kirchhoff's Law.

2. Surface radiation exchange. Diffuse and specular surfaces. Gray and selective surfaces. Configuration factors. Radiation exchange. Enclosure theory, radiosity method. Monte Carlo.

3.Absorbing, emitting and scattering media. Extinction, absorption, and scattering coefficients. Scattering phase function. Optical thickness. Equation of radiative transfer. Solution methods: discrete ordinate, zone, Monte-Carlo.

4. Applications. Cavities. Selective surfaces and media. Semi-transparent windows. Combined radiation-conduction-convection heat transfer.
SkriptCopy of the slides presented.
LiteraturR. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd. ed., Taylor & Francis, New York, 2002.

M. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2003.
151-0207-00LTheory and Modeling of Reactive FlowsW4 KP3GC. E. Frouzakis, I. Mantzaras
KurzbeschreibungThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
LernzielTheory of combustion with numerical applications
InhaltThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
SkriptHandouts
Voraussetzungen / BesonderesNEW course
151-0209-00LRenewable Energy Technologies Information W4 KP3GA. Steinfeld, E. I. M. Casati, F. Dähler
KurzbeschreibungRenewable energy technologies: solar, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.
LernzielStudents learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.
Voraussetzungen / BesonderesPrerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.
151-0213-00LFluid Dynamics with the Lattice Boltzmann Method Belegung eingeschränkt - Details anzeigen W4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0215-00LEngineering Acoustics IW4 KP3GN. Noiray, B. Van Damme
KurzbeschreibungThis course provides an introduction to acoustics. It focusses on fundamental phenomena of airborne and structure-borne sound waves. The lecture combines theoretical principles with practical insights and interpretations.
LernzielThis course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and interpret sound generation, absorption and propagation.
InhaltFirst, magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadrupole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, coherent vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods used to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers).
The second part covers elastic wave phenomena, such as dispersion and vibration modes, in infinite and finite structures.
SkriptHandouts will be distributed during the class
LiteraturBooks will be recommended for each chapter
151-0216-00LWind EnergyW4 KP2V + 1UN. Chokani
KurzbeschreibungThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics.
LernzielThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy.
InhaltThis mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines.
151-0227-00LBasics of Air Transport (Aviation I)W4 KP3GP. Wild
KurzbeschreibungIn general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics.
Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation.
The program is taught in English and we provide 11 different experts/lecturers.
LernzielThe goal is to understand and explain basics, principles and contexts of the broader air transport industry.
Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport.
Ideal foundation for Aviation II - Management of Air Transport.
InhaltWeekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field

Concept: This course will be tought as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport".

Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Aviation Law; Maintenance & Manufacturers; Airport Operations & Planning; Aviation Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Aviation.

Excusions: In the past few years, we conducted two excursions for this course. Yet, under COVID the situation is to complicated so that we have to cancel both events. We may offer students to register in one of the next excursions....thank you for your understanding
SkriptPreparation materials & slides are provided prior to each class
LiteraturLiterature will be provided by the lecturers, respectively there will be additional Information upon registration
Voraussetzungen / BesonderesNone
151-0251-00LIC-Engines: Principles, Thermodynamic Optimization and Future ApplicationsW4 KP2V + 1UK. Boulouchos, G. Georges, K. Herrmann
KurzbeschreibungFuture Relevance of IC Engines for Transportation and Power-on-Demand. Characteristic performance parameters and operating maps. Thermodynamic cycles and energetic optimization. Heat transfer and waste heat recovery. Turbocharging methods. Hybrid powertrains and energy storage on board. Decentralized power and heat cogeneration incl. use of renewable fuels.
LernzielThe students get familiar with operating characteristics and efficiency maximization methods of IC engines for propulsion and decentralized electricity ( and heat ) generation. For this purpose they learn to use advanced simulation methods and related experimental techniques for performance assessment in a combination of lectures and exercises.
SkriptIn English.
LiteraturJ. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill
151-0368-00LAeroelasticity Belegung eingeschränkt - Details anzeigen W4 KP2V + 1UM. Righi
KurzbeschreibungEinführung in die Grundlagen und Methoden der Aeroelastik. Überblick über die wichtigsten statischen und dynamischen Phänomene, die aus der Kopplung zwischen Strukturkräften und aerodynamischen Lasten entstehen.
LernzielDie Vorlesung soll ein physikalisches Grundverständnis für gekoppelte Strömung-Struktur-Phänomene vermitteln. Ausserdem soll den Teilnehmern ein Überblick über die wichtigsten Phänomene der statischen und der dynamischen Aeroelastik gegeben werden, sowie eine Einführung in die entsprechenden analytischen und numerischen Methoden zur mathematischen Beschreibung und zur Formulierung quantitativen Voraussagen.
InhaltElemente der stationären und instationären Aerodynamik.
Auswertung der aerodynamischen Lasten durch analytische (Reduced-Order Models, Indicial Functions), experimentelle (Wind Tunnel) und numerische Ansätze (CFD)

Statische Aeroelastik: Berechnung der statischen aeroelastischen Antwort einfacher Systeme, Ruderwirksamkeit und -umkehr. Auswirkung der Flügelpfeilung auf statische aeroelastische Phänomene, aeroelastische Divergenz am starren Streifenmodell, aeroelastische Divergenz eines kontinuierlichen Flügels.

Dynamische Aeroelastik: Berechnung der dynamischen aeroelastischen Antwort einfacher Systeme. Kinematik des Biegetorsionsflatterns. Dynamik des starren Flügelstreifenmodells. Dynamik des Biegetorsionsflatterns.

Numerische Aeroelastik (Test Cases aus den letzten AIAA Aeroelastic Prediction Workshops).

Aeroelastische Antwort von modernen Flugzeugen: Wirkung von Steuerflächen und Systemen (Aeroservoelastik), active-controlled Aircraft, Flutter-suppression Systems, Zertifizierung (EASA, FAA).

Planung und Durchführung von Windkanal-Versuchen von aeroelastischen Modellen. Durchführung von einem Experiment im ETH-WK.

Einblick in nicht-lineare Phenomäne wie Limit-Cycle Oscillations (LCO).
SkriptSkript (auf Englisch) vorhanden.
LiteraturBispilnghoff Ashley, Aeroelasticity
Abbott, Theory of Wing sections,
Y. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions.
151-0709-00LStochastic Methods for Engineers and Natural Scientists Belegung eingeschränkt - Details anzeigen
Number of participants limited to 20.
W4 KP4GD. W. Meyer-Massetti
KurzbeschreibungThe course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.
LernzielBy the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.
Inhalt- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Polynomial chaos and other expansion methods
All topics are illustrated with engineering applications.
SkriptDetailed lecture notes will be provided.
LiteraturSome textbooks related to the material covered in the course:
Stochastic Methods: A Handbook for the Natural and Social Sciences, Crispin Gardiner, Springer, 2010
The Fokker-Planck Equation: Methods of Solutions and Applications, Hannes Risken, Springer, 1996
Turbulent Flows, S.B. Pope, Cambridge University Press, 2000
Spectral Methods for Uncertainty Quantification, O.P. Le Maitre and O.M. Knio, Springer, 2010
151-0851-00LRobot Dynamics Information Belegung eingeschränkt - Details anzeigen W4 KP2V + 2UM. Hutter, R. Siegwart
KurzbeschreibungWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
LernzielThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
InhaltThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Voraussetzungen / BesonderesThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
151-0911-00LIntroduction to Plasmonics Information W4 KP2V + 1UD. J. Norris
KurzbeschreibungThis course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
LernzielElectromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
InhaltFundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials
SkriptClass notes and handouts
LiteraturS. A. Maier, Plasmonics: Fundamentals and Applications, 2007, Springer
Voraussetzungen / BesonderesPhysics I, Physics II
151-0917-00LMass TransferW4 KP2V + 2US. E. Pratsinis, A. Güntner, V. Mavrantzas
KurzbeschreibungThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
LernzielThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
InhaltFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.
LiteraturCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Voraussetzungen / BesonderesStudents attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.
151-0927-00LRate-Controlled Separations in Fine ChemistryW6 KP3V + 1UM. Mazzotti
KurzbeschreibungDie Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen.
LernzielDie Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen.
InhaltThe class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Liquid-liquid extraction; 2) Adsorption and chromatography; 3) Membrane processes; 4) Crystallization and precipitation.
SkriptBeilagen in der Vorlesung
LiteraturBücher werden in der Vorlesung besprochen
Voraussetzungen / BesonderesBesonderes: Teile der Vorlesung werden in Englisch gehalten.

Voraussetzungen: Thermische Verfahrenstechnik I (151-0926-00) und Mathematische Methoden in den Chemieingenieurwissenschaften (151-0940-00)
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle