Suchergebnis: Katalogdaten im Herbstsemester 2020
Science, Technology, and Policy Master ![]() | ||||||
![]() Die Kategorie "Sozialwissenschaftliche Fächer" im Reglement 2019 entspricht der Kategorie Kernfächer aus dem Reglement 2015. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
860-0003-00L | Cornerstone Science, Technology, and Policy ![]() Only for Science, Technology, and Policy MSc and PhD. ISTP-PhD students please register via the Study Administration. | O | 2 KP | 1S | T. Bernauer | |
Kurzbeschreibung | This course introduces students to the MSc STP programme. It provides a general introduction to the study of STP. | |||||
Lernziel | Students will gett a general introduction to the study of STP. Students will learn about a variety of complex policy problems and ways and means of coming up with proposals for and assessments of policy options. In a reading workshop, they will learn how to improve their sikills in reading and understanding scientific papers in English language. An assessment will help students to map, where they are now and what qualities and skills they may wish to develop during and after their studies, | |||||
Inhalt | - Introduction to Science, Technology and Policy. - Golden Personality Profile Assessment (GPTP). - Reading Workshop: Scientific Papers in English Language A detailled programme will be sent out to the participants in advance to the course. | |||||
860-0004-00L | Bridging Science, Technology, and Policy ![]() Only for Science, Technology, and Policy MSc and PhD. ISTP-PhD students please register via the Study Administration.. | O | 3 KP | 2S | T. Bernauer | |
Kurzbeschreibung | This course focuses on technological innovations from the beginning of humanity through the industrial revolution up until today. It provides students with a deeper understanding of the factors that drive technological innovations, and the roles government policies, society, science, and industry play in this regard. | |||||
Lernziel | This course picks up on the ISTP Cornerstone Science, Technology and Policy course and goes into greater depth on issues covered in that course, as well as additional issues where science and technology are among the causes of societal challenges but can also help in finding solutions. | |||||
Inhalt | Week 1: no class because of ISTP Cornerstone Science, Technology and Policy course Week 2: technology & society in historical perspective - technological innovations up to the industrial revolution Week 3: technology & society in historical perspective - technological innovations during the industrial revolution - engines & electricity Week 4: technology & society in historical perspective - from the industrial revolution to modernity - mobility and transport (railroads, ships, cars, airplanes, space) Week 5: food production: the green revolutions. Week 6: microelectronics, computing & the internet Week 7: life sciences: pharmaceuticals & diagnostic technology Week 8: energy: primary fuels, renewables, networks Week 9: automation: self-driving cars & trains, drones Week 10: communication & Big Data: semiconductors and software Week 11: military & security issues associated with technological innovation Week 12: possible futures (1): nuclear fusion, geoengineering Week 13: possible Future (2): information, communication, robotics, synthetic biology, nanotech, quantum computing | |||||
Skript | Skript: Course materials will be available on moodle. | |||||
Literatur | Literature: Literature and references will be available on Moodle. | |||||
860-0005-00L | Colloquium Science, Technology, and Policy (HS) ![]() Only for Science, Technology, and Policy MSc and PhD. | O | 1 KP | 2K | T. Bernauer, T. Schmidt | |
Kurzbeschreibung | Presentations by invited guest speakers from academia and practice/policy. Students are assigned to play a leading role in the discussion and write a report on the respective event. | |||||
Lernziel | Presentations by invited guest speakers from academia and practice/policy. Students are assigned to play a leading role in the discussion and write a report on the respective event. | |||||
Inhalt | See program on the ISTP website: http://www.istp.ethz.ch/events/colloquium.html | |||||
Voraussetzungen / Besonderes | open to anyone from ETH | |||||
860-0031-00L | Policy Analysis 1 ![]() Only for Science, Technology, and Policy MSc. | O | 4 KP | 2V | T. Schmidt, L. Kaack, B. Steffen | |
Kurzbeschreibung | The course Policy Analysis 1 will introduce important concepts and methods for ex-ante policy analysis. It will mostly focus on the policy content (vis-à-vis the policy process). We will primarily discuss quantitative methods. The course will contain several practical assignments in which students have to apply the concepts and methods studied. | |||||
Lernziel | Students should gain the skill to perform policy analyses independently. To this end, students will be enabled to understand a policy problem and the rationale for policy intervention; to select appropriate impact categories and methods to address a policy problem through policy analysis; to assess policy alternatives, using various ex-ante policy analysis methods; and to communicate the results of the analysis. | |||||
Inhalt | The course has four major topics: •Rationales for public policy in Science and Technology •Impact of policies on firms and investors •Impacts of policies on socio-technical systems •Impact of policies on society at large | |||||
363-0503-00L | Principles of Microeconomics GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie. | O | 3 KP | 2G | M. Filippini | |
Kurzbeschreibung | The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution. | |||||
Lernziel | The learning objectives of the course are: (1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems. | |||||
Inhalt | The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society. Topics covered by the course are: - Supply and demand - Consumer demand: neoclassical and behavioural perspective - Cost of production: neoclassical and behavioural perspective - Welfare economics, deadweight losses - Governmental policies - Market failures, common resources and public goods - Public sector, tax system - Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic) - International trade | |||||
Skript | Lecture notes, exercises and reference material can be downloaded from Moodle. | |||||
Literatur | N. Gregory Mankiw and Mark P. Taylor (2020), "Economics", 5th edition, South-Western Cengage Learning. The book can also be used for the course 'Principles of Macroeconomics' (Sturm) For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book: N. Gregory Mankiw and Mark P. Taylor (2020), "Microeconomics", 5th edition, South-Western Cengage Learning. Complementary: R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education. | |||||
Voraussetzungen / Besonderes | GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie. | |||||
860-0041-00L | Statistics 1 ![]() Only for Science, Technology and Policy MSc. | O | 4 KP | 2V | E. K. Smith | |
Kurzbeschreibung | This course covers the necessary fundamentals for the use of statistics to understand policy. Theoretically the course will provide a survey of foundational concepts and techniques statistics and mathematics. The applied part of the course will focus on implementing these techniques in R, as well as the practical skills required to develop their own data based research projects. | |||||
Lernziel | Gain a familiarity with foundational concepts and techniques in statistics, and be able to apply these to new problems. Be comfortable independently conducting a variety of tasks in R, such as data cleaning, visualisation and analysis. Produce summaries of statistical analyses that non-specialists can understand. | |||||
Inhalt | This course introduces students to the necessary fundamentals of statistics, and its application, to understand policy. Theoretically the course will provide a survey of foundational concepts and techniques statistics and mathematics. The applied part of the course will focus on implementing these techniques in R, as well as developing the practical skills in the language required to be able to independently conduct data based research projects. By doing so, students will gain a familiarity with foundational concepts and techniques in statistics, and be able to apply these to new problems. Students will also develop the requisite skills to be able to independently conduct a variety of tasks in R, such as data cleaning, visualisation and analysis. Finally, students will be able to produce summaries of statistical analyses that non-specialists can understand. | |||||
![]() | ||||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
101-0577-00L | An Introduction to Sustainable Development in the Built Environment | W | 3 KP | 2G | G. Habert, D. Kaushal | |
Kurzbeschreibung | In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. in 2016, other political bodies made these changes more difficult to predict. What does it mean for the built environment? This course provides an introduction to the notion of sustainable development when applied to our built environment | |||||
Lernziel | At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment. In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment). For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects. The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment. Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction. After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development. The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development. | |||||
Inhalt | The following topics give an overview of the themes that are to be worked on during the lecture. - Overview on the history and emergence of sustainable development - Overview on the current understanding and definition of sustainable development Methods - Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction) - Method 2: Life Cycle Costing - Method 3: Labels and certification Main issues: - Operation energy at building, urban and national scale - Mobility and density questions - Embodied energy for developing and developed world - Synthesis: Transition to sustainable development | |||||
Skript | All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided. | |||||
Literatur | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||
063-0703-00L | Architecture of Territory: Territorial Design in Histories, Theories and Projects | W | 2 KP | 2V | M. Topalovic | |
Kurzbeschreibung | This lecture series sets up an agenda for widening the disciplinary field of architecture and urbanism from their focus on the city, or the urban in the narrow sense, to wider territorial scales, which correspond to the increasing scales of contemporary urbanization. It discusses the concepts of territory and urbanisation, and their implications for the work of architects and urbanists. | |||||
Lernziel | The course will enable students to critically discuss concepts of territory and urbanisation. It will invite students to revisit the history of architects’ work engaging with the problematic of urbanising territories and territorial organisation. The goal is to motivate and equip students to engage with territory in the present day and age, by setting out our contemporary urban agenda. The lectures are animated by a series of visual and conceptual exercises, usually on A4 sheets of paper. All original student contributions will be collected and bound together, creating a unique book-object. Some of the exercises are graded and count as proof of completion. | |||||
Inhalt | Within the program, the five guest speakers are invited to open up perspectives on territory as Earth and the manifold meanings it embodies: Earth as a living world, a world-system, earth as soil, as land, as field, and even as dirt. By looking at the Earth and its ecologies, the guest speakers will propose novel and urgent approaches to territory and urbanisation: from “Gaia-graphy” of Earth's critical zones, and emergence of urban soil mapping as tool in urban design, to working with "dirt” in order to develop an ethics of care and maintenance for precarious environments. 17. 09. 2020 On Territory 24. 09. 2020 Architecture and Urbanisation 01. 10. 2020 Critical Zones: Sensors for Ghost Landscapes Guest lecture by ALEXANDRA ARÈNES 08. 10. 2020 Methods in Territorial Research and Design 15. 10. 2020 Urban Soils Mapping: Case West Lausanne Guest lecture by ANTOINE VIALLE 29. 10. 2019 Linking Soils Across the Urban-Rural Nexus Guest lecture by JOHAN SIX 05. 11. 2020 Planetary Urbanisation: Hinterland 12. 11. 2020 Arable Lands Lost Lands Guest lecture by CHARLOTTE MALTERRE-BARTHES 19. 11. 2020 Disappearance of the Countryside 26. 11. 2020 Dirty Theory: Dirt and Decolonisation Guest lecture by HÉLÉNE FRICHOT 03. 12. 2020 Our Common Territories: An Outlook | |||||
Voraussetzungen / Besonderes | The lectures will take place on Thursdays, 10.00-12:00, over ZOOM (https://ethz.zoom.us/j/97460528881). For this course, students live ‘online’ participation is required. Lecturer: Prof. Milica Topalovic Team: Charlotte Malterre Barthes, Metaxia Markaki, Gyler Mydyti, Nazli Tümerdem Contact: Metaxia Markaki markaki@arch.ethz.ch Our website: Link | |||||
701-1453-00L | Ecological Assessment and Evaluation ![]() | W | 3 KP | 3G | F. Knaus | |
Kurzbeschreibung | The course provides methods and tools for ecological evaluations dealing with nature conservation or landscape planning. It covers census methods, ecological criteria, indicators, indices and critically appraises objectivity and accuracy of the available methods, tools and procedures. Birds and plants are used as main example guiding through different case studies. | |||||
Lernziel | Students will be able to: 1) critically consider biological data books and local, regional, and national inventories; 2) evaluate the validity of ecological criteria used in decision making processes; 3) critically appraise the handling of ecological data and criteria used in the process of evaluation 4) perform an ecological evaluation project from the field survey up to the descision making and planning. | |||||
Skript | Powerpoint slides are available on the webpage. Additional documents are handed out as copies. | |||||
Literatur | Basic literature and references are listed on the webpage. | |||||
Voraussetzungen / Besonderes | The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group. Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses: - Pflanzen- und Vegetationsökologie - Systematische Botanik - Raum- und Regionalentwicklung - Naturschutz und Naturschutzbiologie | |||||
363-1047-00L | Urban Systems and Transportation | W | 3 KP | 2G | G. Loumeau | |
Kurzbeschreibung | This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems. | |||||
Lernziel | The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course. | |||||
Inhalt | The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems. In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks. In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography. Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention. In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations. | |||||
Skript | Course slides will be made available to students prior to each class. | |||||
Literatur | Course slides will be made available to students. | |||||
101-0509-00L | Infrastructure Management 1: Process | W | 6 KP | 3G | B. T. Adey, C. Kielhauser | |
Kurzbeschreibung | The course provides an introduction to the steps included in the infrastructure management process. | |||||
Lernziel | Upon completion of the course, students will - understand the steps required to manage infrastructure effectively, and - understand the complexity of these steps. | |||||
Inhalt | The lectures are structured as follows: - Introduction - Setting goals and constraints - Predicting the future - Determining and justifying interventions - Determining and justifying monitoring - Converting programs to projects - Analysing projects - Ensuring good information - Ensuring a well run organisation - Describing the IM process - Evaluating the IM process | |||||
Skript | Appropriate reading / and study material will be handed out during the course. Transparencies will be handed out at the beginning of each class. | |||||
Literatur | Appropriate literature will be handed out when required. | |||||
103-0347-01L | Landscape Planning and Environmental Systems (GIS Exercises) ![]() | W | 3 KP | 2U | A. Grêt-Regamey, M. Galleguillos Torres, A. Stritih | |
Kurzbeschreibung | Im Kurs werden die Inhalte der Vorlesung Landschaftsplanung und Umweltsysteme (103-0347-00 V) verdeutlicht. Die verschiedenen Aspekte (z.B. Habitatmodellierung, ökosystemleistungen, Landnutzungsänderung, Vernetzung) werden in einzelnen GIS Übungen praktisch erarbeitet. | |||||
Lernziel | - Praktische Anwendung der theoretischen Grundlagen aus der Vorlesung - Quantitative Erfassung und Bewertung der Eigenschaften der Landschaft durchführen - Zweckmässiger Einsatz von GIS für die Landschaftsplanung kennen - Anhand von Fallbeispielen Massnahmen der Landschaftsplanung erarbeiten | |||||
Inhalt | - Einsatz von GIS in der Landschaftsplanung - Landschaftsanalyse - Landschaftsstrukturmasse - Modellierung von Habitaten und Landnutzungsänderungen - Berechnung urbaner Landschaftsdienstleistungen - ökologische Vernetzung | |||||
Skript | Kein Skript. Die Unterlagen, bestehend aus Präsentationsunterlagen der einzelnen Referate werden teilweise abgegeben und stehen auf Moodle zum Download bereit. | |||||
Literatur | Wird in der Veranstaltung genannt. | |||||
Voraussetzungen / Besonderes | GIS-Grundkenntisse sind von Vorteil. | |||||
103-0347-00L | Landscape Planning and Environmental Systems ![]() | W | 3 KP | 2V | A. Grêt-Regamey | |
Kurzbeschreibung | Im Kurs werden die Methoden zur Erfassung und Messung der Landschaftseigenschaften, sowie Massnahmen und Umsetzung in der Landschaftsplanung vermittelt. Die Landschaftsplanung wird in den Kontext der Umweltsysteme (Boden, Wasser, Luft, Klima, Pflanzen und Tiere) gestellt und hinsichtlich gesellschaftspolitischer Zukunftsfragen diskutiert. | |||||
Lernziel | Ziele der Vorlesung sind: 1) Der Begriff Landschaftsplanung, die ökonomische Bedeutung von Landschaft und Natur im Kontext der Umweltsysteme (Boden, Wasser, Luft, Klima, Pflanzen und Tiere) erläutern. 2) Die Landschaftsplanung als umfassendes Informationssystem zur Koordination verschiedener Instrumente aufzeigen, indem die Ziele, Methoden, die Instrumente und deren Funktion in der Landschaftsplanung erläutert werden. 3) Die Leistungen von Ökosystemen verdeutlichen. 4) Die Grundlageninformationen über Natur und Landschaft aufzeigen: Analyse und Bewertung des komplexen Wirkungsgefüges aller Landschaftsfaktoren, Auswirkungen vorhandener und absehbaren Raumnutzungen (Naturgüter und Landschaftsfunktionen). 5) Die Erfassung und Messung der Eigenschaften der Landschaft. 6) Zweckmässiger Einsatz von GIS für die Landschaftsplanung kennen lernen. | |||||
Inhalt | In dieser Vorlesung werden folgende Themen behandelt: - Definition Landschaft, Landschaftsbegriff - Lanschaftsstrukturmasse - Landschaftswandel - Landschaftsplanung - Methoden, Instrumente und Ziele in der Landschaftsplanung (Politik) - Gesellschaftspolitische Zukunftsfragen - Umweltsysteme, ökologische Vernetzung - ökosystemleistungen - Urbane Landschaftsdienstleistungen - Praxis der Landschaftsplanung - Einsatz von GIS in der Landschaftsplanung | |||||
Skript | Kein Skript. Die Unterlagen, bestehend aus Präsentationsunterlagen der einzelnen Referate werden teilweise abgegeben und stehen auf Moodle zum Download bereit. | |||||
Voraussetzungen / Besonderes | Die Inhalte der Vorlesung werden in der zugehörigen Lehrveranstaltung 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) verdeutlicht. Eine entsprechende Kombination der Lehrveranstaltungen wird empfohlen. | |||||
101-0427-01L | Public Transport Design and Operations | W | 6 KP | 4G | F. Corman, F. Leutwiler | |
Kurzbeschreibung | This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system. | |||||
Lernziel | Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups. Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport. General structure: general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems. | |||||
Inhalt | Basics for line transport systems and networks Passenger/Supply requirements for line operations Objectives of system and network planning, from different perspectives and users, design dilemmas Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport Planning process, from demand evaluation to line planning to timetables to operations Matching demand and modes Line planning techniques Timetabling principles Allocation of resources Management of operations Measures of realized operations Improvements of existing services | |||||
Skript | Lecture slides are provided. | |||||
Literatur | Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English) Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch) Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English) Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English) Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English) White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English) | |||||
103-0307-00L | Multi-Criteria Decision Analysis ![]() | W | 3 KP | 2G | A. Grêt-Regamey, M. J. Van Strien | |
Kurzbeschreibung | Planer müssen Entscheidungen über optimale Landnutzungen und ihre räumliche Anordnung treffen. Dank erhöhter Verfügbarkeit räumlicher Daten und GIS-Analysefertigkeiten werden für die Planung wirksamere Entscheidungsunterstützungssysteme entwickelt. Im Kurs werden die Grundlagen räumlicher Analysen sowie die Integration räumlicher Daten in multikriterielle Entscheidungssysteme vermittelt. | |||||
Lernziel | Der Kurs soll: 1) Studierende in Techniken und Belange der räumlichen Entscheidungsunterstützungssystemen einführen, inklusive Analysetechniken 2) praktische Übungen dieser Ansätze mit R anbieten, welche reale Umwelt- und Landschaftsplanungsprobleme betreffen. Der Fokus liegt auf Konzepten, Datenressourcen, und Analyseinstrumenten, welche Studierende in einer wissenschaftlichen Karriere oder in der Praxis einsetzen können. | |||||
Skript | Die Unterlagen, bestehend aus Präsentationsunterlagen der einzelnen Referate und einem Skript werden teilweise abgegeben und stehen auf der Homepage des Fachbereichs PLUS zum Download bereit. Download: Link | |||||
Voraussetzungen / Besonderes | Der Kurs setzt Grundkenntnisse von R Software voraus. RE&IS-Masterstudierende bekommen dies in der Lerneinheit "Basics of RE&IS" (103-0377-10L) vermittelt. Vorausgesetzt, dass es noch freie Plätze gibt, ist diese Lerneinheit auch für Studierende anderer Studiengänge offen (d.h. erste fünf Lektionen, ohne Vergabe von Kreditpunkten). Solche Studierenden können sich via Email bei Maarten van Strien (vanstrien@ethz.ch) anmelden. Alternativ können die Grundlagen zu R über Online-Tutorials, wie z.B. "Introduction to R" by W. N. Venables and D. M. Smith available online at http://cran.r-project.org/doc/manuals/R-intro.pdf erworben werden. | |||||
851-0252-08L | Evidence-Based Design: Methods and Tools For Evaluating Architectural Design ![]() ![]() Number of participants limited to 40 Particularly suitable for students of D-ARCH | W | 3 KP | 2S | M. Gath Morad, C. Hölscher, C. Veddeler | |
Kurzbeschreibung | Students are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and complemented with theoretical background on space syntax and spatial cognition. This is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students. | |||||
Lernziel | The course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process. The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in "Vertiefungsfach" or "Wahlfach". | |||||
151-8007-00L | Urban Physics ![]() | W | 3 KP | 3G | J. Carmeliet, D. W. Brunner, A. Rubin, C. Schär, D. A. Strebel, H. Wernli, J. M. Wunderli, Y. Zhao | |
Kurzbeschreibung | Urban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context. | |||||
Lernziel | - Basic knowledge of the global climate and the local microclimate around buildings - Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand - Application of urban physics concepts in urban design | |||||
Inhalt | - Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs - Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort, - Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks. - Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability - Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality - Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation | |||||
Skript | The course lectures and material are provided online via Moodle. | |||||
Voraussetzungen / Besonderes | No prior knowledge is required. | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0216-00L | Wind Energy | W | 4 KP | 2V + 1U | N. Chokani | |
Kurzbeschreibung | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics. | |||||
Lernziel | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. | |||||
Inhalt | This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines. | |||||
101-0427-01L | Public Transport Design and Operations | W | 6 KP | 4G | F. Corman, F. Leutwiler | |
Kurzbeschreibung | This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system. | |||||
Lernziel | Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups. Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport. General structure: general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems. | |||||
Inhalt | Basics for line transport systems and networks Passenger/Supply requirements for line operations Objectives of system and network planning, from different perspectives and users, design dilemmas Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport Planning process, from demand evaluation to line planning to timetables to operations Matching demand and modes Line planning techniques Timetabling principles Allocation of resources Management of operations Measures of realized operations Improvements of existing services | |||||
Skript | Lecture slides are provided. | |||||
Literatur | Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English) Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch) Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English) Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English) Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English) White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English) | |||||
227-0731-00L | Power Market I - Portfolio and Risk Management | W | 6 KP | 4G | D. Reichelt, G. A. Koeppel | |
Kurzbeschreibung | Portfolio und Risiko Management für Energieversorgungsunternehmen, Europäischer Strommarkt und -handel, Terminkontrakte, Preisabsicherung, Optionen und Derivate, Kennzahlen für das Risikomanagement, finanztechnische Modellierung von Kraftwerken, grenzüberschreitender Stromhandel, Systemdienstleistungen, Regelenergiemarkt, Bilanzgruppenmodell. | |||||
Lernziel | Erwerb von umfassenden Kenntnissen über die weltweite Liberalisierung der Strommärkte, den internationalen Stromhandel sowie die Funktion von Strombörsen. Verstehen der Finanzprodukte (Derivate) basierend auf dem Strompreis. Abbilden des Portfolios aus physischer Produktion, Verträgen und Finanzprodukten. Beurteilen von Strategien zur Absicherung des Marktpreisrisikos. Beherrschen der Methoden und Werkzeuge des Risiko Managements. | |||||
Inhalt | 1. Europäischer Strommarkt und –handel 1.1. Einführung Stromhandel 1.2. Entwicklung des Marktes 1.3. Energiewirtschaft 1.4. Spothandel und OTC-Handel 1.5. Strombörse EEX 2. Marktmodell 2.1. Marktplatz und Organisation 2.2. Bilanzgruppenmodell / Ausgleichsenergie 2.3. Systemdienstleistungen 2.4. Regelenergiemarkt 2.5. Grenzüberschreitender Handel 2.6. Kapazitätsauktionen 3. Portfolio und Risiko Management 3.1. Portfoliomanagement 1 (Einführung) 3.2. Terminkontrakte (EEX Futures) 3.3. Risk Management 1 (m2m, VaR, hpfc, Volatilität, cVaR) 3.4. Risk Management 2 (PaR) 3.5. Vertragsbewertung (HPFC) 3.6. Portfoliomanagement 2 3.7. Risk Management 3 (Energiegeschäft) 4. Energie & Finance I 4.1. Optionen 1 – Grundlagen 4.2. Optionen 2 – Absicherungsstrategien 4.3. Einführung Derivate (Swaps, Cap, Floor, Collar) 4.4. Finanztechnische Modellierung von Kraftwerken 4.5. Wasserkraft und Handel 4.6. Anreizregulierung | |||||
Skript | Handouts mit den Folien der Vorlesung | |||||
Voraussetzungen / Besonderes | 1 Exkursion pro Semester, 2 Case Studies, externe Referaten für ausgewählte Themen. Kurs Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636 |
Seite 1 von 4
Alle