Suchergebnis: Katalogdaten im Herbstsemester 2020

Mathematik Master Information
Kernfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3225-00LIntroduction to Lie Groups Information
Self-service registration for this course unit in myStudies has been closed.
W8 KP4GA. Iozzi
KurzbeschreibungTopological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.
LernzielThe goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.
LiteraturA. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser)
A. Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)
F. Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)
H. Samelson: "Notes on Lie algebras" (Springer, '90)
S. Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)
A. Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press)
Voraussetzungen / BesonderesTopology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.

Course webpage: Link
401-3001-61LAlgebraic Topology I Information W8 KP4GP. Biran
KurzbeschreibungThis is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include:
singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms.
Lernziel
Literatur1) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.


2) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

Book can be downloaded for free at:
Link

See also:
Link


3) E. Spanier, "Algebraic topology", Springer-Verlag
Voraussetzungen / BesonderesYou should know the basics of point-set topology.

Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology").

Some knowledge of differential geometry and differential topology is useful but not strictly necessary.

Some (elementary) group theory and algebra will also be needed.
401-3145-70LAlgebraic Geometry I
Registration for this course unit has been closed.
W10 KP4V + 1UP. Yang
KurzbeschreibungThis course is an introduction to Algebraic Geometry (algebraic varieties).
LernzielLearning Algebraic Geometry.
LiteraturPrimary reference:
* I. R. Shafarevich, Basic Algebraic geometry 1 & 2, Springer-Verlag.
* M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publ., 1969.

Secondary reference:
* Ulrich Görtz and Torsten Wedhorn: Algebraic Geometry I, Advanced Lectures in Mathematics, Springer.
* Qing Liu: Algebraic Geometry and Arithmetic Curves, Oxford Science Publications.
* Robin Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, Springer.
* Siegfried Bosch: Algebraic Geometry and Commutative Algebra, Springer 2013.
* D. Eisenbud: Commutative algebra. With a view towards algebraic geometry, GTM 150, Springer Verlag, 1995.
* H. Matsumura, Commutative ring theory, Cambridge University Press 1989.
* N. Bourbaki, Commutative Algebra.

Other good textbooks and online texts are:
* David Eisenbud, Joe Harris: The Geometry of Schemes, Graduate Texts in Mathematics, Springer.
* Ravi Vakil, Foundations of Algebraic Geometry, Link
* Jean Gallier and Stephen S. Shatz, Algebraic Geometry Link

"Classical" Algebraic Geometry over an algebraically closed field:
* Joe Harris, Algebraic Geometry, A First Course, Graduate Texts in Mathematics, Springer.
* J.S. Milne, Algebraic Geometry, Link

Further readings:
* Günter Harder: Algebraic Geometry 1 & 2
* Alexandre Grothendieck et al.: Elements de Geometrie Algebrique EGA
* Saunders MacLane: Categories for the Working Mathematician, Springer-Verlag.
Voraussetzungen / BesonderesLinear Algebra
Kernfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel: Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
NummerTitelTypECTSUmfangDozierende
401-3651-00LNumerical Analysis for Elliptic and Parabolic Partial Differential Equations Information
Course audience at ETH:
3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course
"Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.
W10 KP4V + 1UC. Schwab
KurzbeschreibungThis course gives a comprehensive introduction into the numerical treatment of linear and nonlinear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.
LernzielParticipants of the course should become familiar with
* concepts underlying the discretization of elliptic and parabolic boundary value problems
* analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
* methods for the efficient solution of discrete boundary value problems
* implementational aspects of the finite element method
InhaltThe course will address the mathematical analysis of numerical solution methods
for linear and nonlinear elliptic and parabolic partial differential equations.
Functional analytic and algebraic (De Rham complex) tools will be provided.
Primal, mixed and nonstandard (discontinuous Galerkin, Virtual, Trefftz) discretizations will be analyzed.

Particular attention will be placed on developing mathematical foundations
(Regularity, Approximation theory) for a-priori convergence rate analysis.
A-posteriori error analysis and mathematical proofs of adaptivity and optimality
will be covered.
Implementations for model problems in MATLAB and python will illustrate the
theory.

A selection of the following topics will be covered:

* Elliptic boundary value problems
* Galerkin discretization of linear variational problems
* The primal finite element method
* Mixed finite element methods
* Discontinuous Galerkin Methods
* Boundary element methods
* Spectral methods
* Adaptive finite element schemes
* Singularly perturbed problems
* Sparse grids
* Galerkin discretization of elliptic eigenproblems
* Non-linear elliptic boundary value problems
* Discretization of parabolic initial boundary value problems
LiteraturSUPPLEMENTARY Literature (core material will be in lecture notes)


Brenner, Susanne C.; Scott, L. Ridgway The mathematical theory of finite element methods. Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. xviii+397 pp.

A. Ern and J.L. Guermond: Theory and Practice of Finite Element Methods,
Springer Applied Mathematical Sciences Vol. 159, Springer,
1st Ed. 2004, 2nd Ed. 2015.

R. Verfürth: A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013

Additional Literature:
D. Braess: Finite Elements, THIRD Ed., Cambridge Univ. Press, (2007).
(Also available in German.)

Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. xiv+599 pp.

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 SMAI Mathématiques et Applications,
Springer, 2012 [DOI: 10.1007/978-3-642-22980-0]

V. Thomee: Galerkin Finite Element Methods for Parabolic Problems,
SECOND Ed., Springer Verlag (2006).
Voraussetzungen / BesonderesPractical exercises based on MATLAB

Former title of the course unit: Numerical Methods for Elliptic and Parabolic Partial Differential Equations
401-3621-00LFundamentals of Mathematical Statistics Information W10 KP4V + 1US. van de Geer
KurzbeschreibungThe course covers the basics of inferential statistics.
Lernziel
401-3622-00LStatistical Modelling Information W8 KP4GP. L. Bühlmann, M. Mächler
KurzbeschreibungIn der Regression wird die Abhängigkeit einer zufälligen Response-Variablen von anderen Variablen untersucht. Wir betrachten die Theorie der linearen Regression mit einer oder mehreren Ko-Variablen, hoch-dimensionale lineare Modelle, nicht-lineare Modelle und verallgemeinerte lineare Modelle, Robuste Methoden, Modellwahl und nicht-parametrische Modelle.
LernzielEinführung in Theorie und Praxis eines umfassenden und vielbenutzten Teilgebiets der Statistik, unter Berücksichtigung neuerer Entwicklungen.
InhaltIn der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle. Querverbindungen zur Varianzanalyse, Modellsuche, Residuenanalyse; Einblicke in Robuste Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
SkriptVorlesungsskript
Voraussetzungen / BesonderesThis is the course unit with former course title "Regression".
Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
401-4889-00LMathematical Finance Information W11 KP4V + 2UJ. Teichmann
KurzbeschreibungAdvanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics
LernzielAdvanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes)
InhaltThis is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models.

Topics include
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others
SkriptThe course is based on different parts from different books as well as on original research literature.

Lecture notes will not be available.
Literatur(will be updated later)
Voraussetzungen / BesonderesPrerequisites are the standard courses
- Probability Theory (for which lecture notes are available)
- Brownian Motion and Stochastic Calculus (for which lecture notes are available)
Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts.

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see Link.
401-3901-00LMathematical OptimizationW11 KP4V + 2UR. Zenklusen
KurzbeschreibungMathematical treatment of diverse optimization techniques.
LernzielThe goal of this course is to get a thorough understanding of various classical mathematical optimization techniques with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on this structural understanding.
InhaltKey topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and techniques;
- Equivalence between optimization and separation;
- Brief introduction to Integer Programming.
Literatur- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / BesonderesSolid background in linear algebra.
Bachelor-Kernfächer aus Bereichen der reinen Mathematik
Nebst weiteren Einschränkungen gilt:
Die Anrechnung von 401-3531-00L Differentialgeometrie I / Differential Geometry I im Master-Studiengang ist nur dann zulässig, wenn 401-3532-00L Differentialgeometrie II / Differential Geometry II nicht für den Bachelor-Studiengang angerechnet wurde.
Ebenso für:
401-3461-00L Funktionalanalysis I / Functional Analysis I - 401-3462-00L Funktionalanalysis II / Functional Analysis II
401-3001-61L Algebraische Topologie I / Algebraic Topology I - 401-3002-12L Algebraische Topologie II / Algebraic Topology II
401-3132-00L Kommutative Algebra / Commutative Algebra - 401-3146-12L Algebraische Geometrie / Algebraic Geometry
Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link).
NummerTitelTypECTSUmfangDozierende
401-3461-00LFunctional Analysis I Belegung eingeschränkt - Details anzeigen
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link) wenden.
E-10 KP4V + 1UA. Carlotto
KurzbeschreibungBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.
LernzielAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteraturRecommended references include the following:

Michael Struwe: "Funktionalanalysis I" (Skript available at Link)

Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011.

Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017.

Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
Voraussetzungen / BesonderesSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part. Lebesgue integration and L^p spaces).
401-3531-00LDifferential Geometry I
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link) wenden.
E-10 KP4V + 1UW. Merry
KurzbeschreibungThis will be an introductory course in differential geometry.

Topics covered include:

- Smooth manifolds, submanifolds, vector fields,
- Lie groups, homogeneous spaces,
- Vector bundles, tensor fields, differential forms,
- Integration on manifolds and the de Rham theorem,
- Principal bundles.
Lernziel
LiteraturThere are many excellent textbooks on differential geometry. A friendly and readable book that covers everything in Differential Geometry I is:

John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag.

A more advanced (and far less friendly) series of books that covers everything in both Differential Geometry I and II is:

S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volumes I and II (1963, 1969) Wiley.
Bachelor-Kernfächer aus Bereichen der angewandten Mathematik ..
Nebst weiteren Einschränkungen gilt:
Die Anrechnung von 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory im Master-Studiengang ist nur dann zulässig, wenn weder 401-3642-00L Brownian Motion and Stochastic Calculus noch 401-3602-00L Applied Stochastic Processes für den Bachelor-Studiengang angerechnet wurde.
Ausserdem ist 402-0205-00L Quantenmechanik I als angewandtes Kernfach anrechenbar, aber nur unter der Bedingung, dass 402-0224-00L Theoretische Physik (letztmals im FS 2016 angeboten) nicht angerechnet wird oder wurde (weder im Bachelor- noch im Master-Studiengang).
Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link).
NummerTitelTypECTSUmfangDozierende
401-3601-00LProbability Theory Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link) wenden.
E-10 KP4V + 1UA.‑S. Sznitman
KurzbeschreibungBasics of probability theory and the theory of stochastic processes in discrete time
LernzielThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
InhaltThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
Skriptavailable in electronic form.
LiteraturR. Durrett, Probability: Theory and examples, Duxbury Press 1996
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991
402-0205-00LQuantenmechanik I Information W10 KP3V + 2UG. M. Graf
KurzbeschreibungEinführung in die Quantentheorie: Wellenmechanik, Schrödinger-Gleichung, Drehimpuls, Zentralkraftprobleme, Potentialstreuung, Spin. Allgemeine Struktur der Quantentheorie: Hilberträume, Zustände und Observable, Bewegungsgleichung, Dichtematrizen, Symmetrien, Schrödinger- und Heisenberg-Bild. Näherungsmethoden: Störungstheorie, Variations-Verfahren, Quasi-Klassische Näherung.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Drehimpuls, Störungstheorie) und generischer Beispiele und Anwendungen (gebundene Zustände, Tunneleffekt, Wasserstoffatom, harmonischer Oszillator). Fähigkeit zur Lösung einfacher Probleme.
InhaltDie Anfänge der Quantentheorie bei Planck, Einstein und Bohr; Wellen- und Matrizenmechanik; der Formalismus der Quantenmechanik (Zustände und Observablen, Hilberträume und Operatoren), der Messprozess, Symmetrien (Translation, Rotationen), Quantenmechanik sowohl in einer Dimension (gebundene Zustände, Streuprobleme, Tunneleffekt, Resonanzen) wie in drei (Zentralkraftprobleme, Potentialstreuung), Störungstheorie, Variations-Verfahren, Drehimpuls und Spin; Beziehung der QM zur klassischen Physik; evtl. zusammengesetzte Systeme und Verschränkung.
SkriptAuf Moodle, in deutscher Sprache
LiteraturG. Baym, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
Wahlfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Wahlfächer aus Bereichen der reinen Mathematik
Auswahl: Algebra, Zahlentheorie, Topologie, diskrete Mathematik, Logik
NummerTitelTypECTSUmfangDozierende
401-3119-70Lp-Adic NumbersW4 KP2VP. Bengoechea Duro
KurzbeschreibungThis course is an introduction to the p-adic numbers. We will see how the field of p-adic numbers Q_p is build. We will explore the (strange) topology and the arithmetic of Q_p, as well as some elementary analytic concepts such as functions, continuity, integrals, etc. We will explain an algebraic and an analytic reasons of interest for the existence of p-adic numbers.
Lernziel
Inhalt- Absolute values on Q and Completions
- Topology and Arithmetic of Q_p, p-adic Integers
- Equations over p-adic numbers and Hensel's Lemma
- Local-global principle
- Hasse-Minkowski's Theorem on binary quadratic forms
- Elementary Analysis in Q_p
- the p-adic Riemann zeta function
Literatur"p-adic Numbers. An Introduction", Fernando Q. Gouvea (Springer)
"p-adic Numbers, p-adic Analysis, and Zeta-Functions", Neal Koblitz (Springer)
"p-adic numbers and Diophantine equations", Yuri Bilu (online notes 2013)
Voraussetzungen / BesonderesThe courses Topology, Measure and Integration, Algebra I/II are required prerequisites.
401-3059-00LKombinatorik II
Findet dieses Semester nicht statt.
W4 KP2GN. Hungerbühler
KurzbeschreibungDer Kurs Kombinatorik I und II ist eine Einführung in die abzählende Kombinatorik.
LernzielDie Studierenden sind in der Lage, kombinatorische Probleme einzuordnen und die adaequaten Techniken zu deren Loesung anzuwenden.
InhaltInhalt der Vorlesungen Kombinatorik I und II: Kongruenztransformationen der Ebene, Symmetriegruppen von geometrischen Figuren, Eulersche Funktion, Cayley-Graphen, formale Potenzreihen, Permutationsgruppen, Zyklen, Lemma von Burnside, Zyklenzeiger, Saetze von Polya, Anwendung auf die Graphentheorie und isomere Molekuele.
Auswahl: Geometrie
NummerTitelTypECTSUmfangDozierende
401-3533-70LDifferential Geometry IIIW4 KP2VU. Lang
KurzbeschreibungTopics in Riemannian geometry in the large: the structure of complete, non-compact Riemannian manifolds of non-negative sectional curvature, including Perelman's (1994) proof of the Cheeger-Gromoll soul conjecture; the Besson-Courtois-Gallot barycenter method (1996) and the proofs of the minimal entropy theorem and the Mostow rigidity theorem for rank one locally symmetric spaces.
Lernziel
401-4531-66LTopics in Rigidity Theory Information W6 KP3VM. Burger
KurzbeschreibungThe aim of this course is to give detailed proofs of Margulis' normal subgroup theorem and his superrigidity theorem for lattices in higher rank Lie groups.
LernzielUnderstand the basic techniques of rigidity theory.
InhaltThis course gives an introduction to rigidity theory, which is a set of techniques initially invented to understand the structure of a certain class of discrete subgroups of Lie groups, called lattices, and currently used in more general contexts of groups arising as isometries of non-positively curved geometries. A prominent example of a lattice in the Lie group SL(n, R) is the group SL(n, Z) of integer n x n matrices with determinant 1. Prominent questions concerning this group are:
- Describe all its proper quotients.
- Classify all its finite dimensional linear representations.
- More generally, can this group act by diffeomorphisms on "small" manifolds like the circle?
- Does its Cayley graph considered as a metric space at large scale contain enough information to recover the group structure?
In this course we will give detailed treatment for the answers to the first two questions; they are respectively Margulis' normal subgroup theorem and Margulis' superrigidity theorem. These results, valid for all lattices in simple Lie groups of rank at least 2 --like SL(n, R), with n at least 3-- lead to the arithmeticity theorem, which says that all lattices are obtained by an arithmetic construction.
Literatur- R. Zimmer: "Ergodic Theory and Semisimple groups", Birkhauser 1984.
- D. Witte-Morris: "Introduction to Arithmetic groups", available on Arxiv
- Y. Benoist: "Five lectures on lattices in semisimple Lie groups", available on his homepage.
- M.Burger: "Rigidity and Arithmeticity", European School of Group Theory, 1996, handwritten notes, will be put online.
Voraussetzungen / BesonderesFor this course some knowledge of elementary Lie theory would be good. We will however treat Lie groups by examples and avoid structure theory since this is not the point of the course nor of the techniques.
401-4141-70LCurves, Jacobians, and Modern Abel-Jacobi Theory Information W6 KP3VR. Pandharipande
Kurzbeschreibung
Lernziel
401-3057-00LEndliche Geometrien IIW4 KP2GN. Hungerbühler
KurzbeschreibungEndliche Geometrien I, II: Endliche Geometrien verbinden Aspekte der Geometrie mit solchen der diskreten Mathematik und der Algebra endlicher Körper. Inbesondere werden Modelle der Inzidenzaxiome konstruiert und Schliessungssätze der Geometrie untersucht. Anwendungen liegen im Bereich der Statistik, der Theorie der Blockpläne und der Konstruktion orthogonaler lateinischer Quadrate.
LernzielEndliche Geometrien I, II: Die Studierenden sind in der Lage, Modelle endlicher Geometrien zu konstruieren und zu analysieren. Sie kennen die Schliessungssätze der Inzidenzgeometrie und können mit Hilfe der Theorie statistische Tests entwerfen sowie orthogonale lateinische Quadrate konstruieren. Sie sind vertraut mit Elementen der Theorie der Blockpläne.
InhaltEndliche Geometrien I, II: Endliche Körper, Polynomringe, endliche affine Ebenen, Axiome der Inzidenzgeometrie, Eulersches Offiziersproblem, statistische Versuchsplanung, orthogonale lateinische Quadrate, Transformationen endlicher Ebenen, Schliessungsfiguren von Desargues und Pappus-Pascal, Hierarchie der Schliessungsfiguren, endliche Koordinatenebenen, Schiefkörper, endliche projektive Ebenen, Dualitätsprinzip, endliche Möbiusebenen, selbstkorrigierende Codes, Blockpläne
Literatur- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.
Auswahl: Analysis
NummerTitelTypECTSUmfangDozierende
401-4355-70LElliptic Regularity TheoryW8 KP4VM. Struwe
KurzbeschreibungWe extend the theory developed in Functional Analysis II in various directions, including variants of the maximum principle, Harnack's inequality, L^p-theory, and systems. Certain limit cases will be discussed. Examples, including the harmonic map system, will illustrate the use of these methods.
Lernziel
LiteraturGiaquinta, Mariano: Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1993.

Gilbarg, David; Trudinger, Neil S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001.

Further references will be given in the lectures.
Auswahl: Weitere Gebiete
NummerTitelTypECTSUmfangDozierende
401-3502-70LReading Course Belegung eingeschränkt - Details anzeigen
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W2 KP4ABetreuer/innen
KurzbeschreibungIn diesem Reading Course wird auf Eigeninitiative und auf individuelle Vereinbarung mit einem Dozenten/einer Dozentin hin ein Stoff durch eigenständiges Literaturstudium erarbeitet.
Lernziel
  •  Seite  1  von  7 Nächste Seite Letzte Seite     Alle