Suchergebnis: Katalogdaten im Herbstsemester 2020

Erd- und Klimawissenschaften Bachelor Information
Grundlagenfächer I
Fächer der Basisprüfung
NummerTitelTypECTSUmfangDozierende
529-2001-02LChemie I Belegung eingeschränkt - Details anzeigen O4 KP2V + 2UJ. Cvengros, J. E. E. Buschmann, P. Funck, S. Hug, E. C. Meister, R. Verel
KurzbeschreibungAllgemeine Chemie I: Chemische Bindung und Molekülstruktur, chemische Thermodynamik, chemisches Gleichgewicht.
LernzielErarbeiten von Grundlagen zur Beschreibung von Aufbau, Zusammensetzung und Umwandlungen der materiellen Welt. Einführung in thermodynamisch bedingte chemisch-physikalische Prozesse. Mittels Modellvorstellungen zeigen, wie makroskopische Phänomene anhand atomarer und molekularer Eigenschaften verstanden werden können. Anwendungen der Theorie zum qualitativen und quantitativen Lösen einfacher chemischer und umweltrelevanter Probleme.
Inhalt1. Stöchiometrie
Stoffmenge und Stoffmasse. Zusammensetzung von Verbindungen. Reaktionsgleichung. Ideales Gasgesetz.
2. Atombau
Elementarteilchen und Atome. Elektronenkonfiguration der Elemente. Periodisches System der Elemente.
3. Chemische Bindung und ihre Darstellung. Raumstruktur von Molekülen. Molekülorbitale.
4. Grundlagen der chemischen Thermodynamik
System und Umgebung. Beschreibung des Zustands und der Zustandsänderungen chemischer Systeme.
5. Erster Hauptsatz
Innere Energie, Wärme und Arbeit. Enthalpie und Reaktionsenthalpie. Thermodynamische Standardbedingungen.
6. Zweiter Hauptsatz
Entropie. Entropieänderungen im System und im Universum. Reaktionsentropie durch Reaktionswärme und durch Stoffänderungen.
7. Gibbs-Energie und chemisches Potential
Kombination der zwei Hauptsätze. Reaktions-Gibbs-Energie.
Stoffaktivitäten bei Gasen, kondensierten Stoffen und gelösten Spezies. Gibbs-Energie im Ablauf chemischer Reaktionen. Gleichgewichtskonstante.
8. Chemisches Gleichgewicht
Massenwirkungsgesetz, Reaktionsquotient und Gleichgewichtskonstante. Gleichgewicht bei Phasenübergängen.
9. Säuren und Basen
Verhalten von Stoffen als Säure oder Base. Dissoziationsfunktionen von Säuren. pH-Begriff. Berechnung von pH-Werten in Säure-Base-Systemen und Speziierungsdiagramme. Säure-Base-Puffer. Mehrprotonige Säuren und Basen.
11. Auflösung und Fällung
Heterogene Gleichgewichte. Lösungsprozess und Löslichkeitskonstante. Speziierungsdiagramme. Das Kohlendioxid-Kohlensäure-Carbonat-Gleichgewicht in der Umwelt.
SkriptOnline-Skript mit durchgerechneten Beispielen.
LiteraturCharles E. Mortimer, CHEMIE - DAS BASISWISSEN DER CHEMIE. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015.

Weiterführende Literatur:
Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten, CHEMIE. 10. Auflage, Pearson Studium, 2011. (deutsch)

Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch)
401-0251-00LMathematik I: Analysis I und Lineare Algebra Belegung eingeschränkt - Details anzeigen O6 KP4V + 2UL. Halbeisen
KurzbeschreibungDiese Vorlesung behandelt mathematische Konzepte und Methoden, die zum Modellieren, Lösen und Diskutieren wissenschaftlicher Probleme nötig sind - speziell durch gewöhnliche Differentialgleichungen.
LernzielMathematik ist von immer grösserer Bedeutung in den Natur- und Ingenieurwissenschaften. Grund dafür ist das folgende Konzept zur Lösung konkreter Probleme: Der entsprechende Ausschnitt der Wirklichkeit wird in der Sprache der Mathematik modelliert; im mathematischen Modell wird das Problem - oft unter Anwendung von äusserst effizienter Software - gelöst und das Resultat in die Realität zurück übersetzt.

Ziel der Vorlesungen Mathematik I und II ist es, die einschlägigen mathematischen Grundlagen bereit zu stellen. Differentialgleichungen sind das weitaus wichtigste Hilfsmittel im Prozess des Modellierens und stehen deshalb im Zentrum beider Vorlesungen.
Inhalt1. Differential- und Integralrechnung:
Wiederholung der Ableitung, Linearisierung, Taylor-Polynome, Extremwerte, Stammfunktion, Hauptsatz der Differential- und Integralrechnung, Integrationsmethoden, uneigentliche Integrale.

2. Lineare Algebra und Komplexe Zahlen:
lineare Gleichungssysteme, Gauss-Verfahren, Matrizen, Determinanten, Eigenwerte und Eigenvektoren, Darstellungsformen der komplexe Zahlen, Potenzieren, Radizieren, Fundamentalsatz der Algebra.

3. Gewöhnliche Differentialgleichungen:
Separierbare Differentialgleichungen (DGL), Integration durch Substitution, Lineare DGL erster und zweiter Ordnung, homogene Systeme linearer DGL mit konstanten Koeffizienten, Einführung in die dynamischen Systeme in der Ebene.
Literatur- Thomas, G. B., Weir, M. D. und Hass, J.: Analysis 1, Lehr- und Übungsbuch (Pearson).
- Gramlich, G.: Lineare Algebra, eine Einführung (Hanser).
- Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, Bd. 1 und 2 (Vieweg+Teubner).
Voraussetzungen / BesonderesVoraussetzungen: Vertrautheit mit den Grundlagen der Analysis, insbesondere mit dem Funktions- und Ableitungsbegriff.

Mathe-Lab (Präsenzstunden):
Mo 18-20, Di 18-20, Mi 18-20, stets im Raum HG E 41.
651-3001-00LDynamische Erde I Belegung eingeschränkt - Details anzeigen O6 KP4V + 2UO. Bachmann, A. Galli, A. Fichtner, L. Krischer, M. Lupker, M. Schönbächler, S. Willett
KurzbeschreibungGrundsätzliche Einführung in die Erdwissenschaften, mit Fokus auf die verschiedenen Gesteinsarten und auf den geologischen Gesteinszyklus, sowie Einführung in die Geophysik und die Theorie der Plattentektonik.
LernzielVerständnis der Grundlagen in den Erdwissenschaften
InhaltÜbersicht über das System Erde, Plattentektonik,und die geologischen Kreisläufe. Der kristalline Zustand: Kristalle und Mineralien. Prozesse des Erdinnern: Magmatische, Metamorphe und Sedimentäre Gesteine. Physik der Erde. Planetotologie. In den Übungen: Praktische Erarbeitung, Vertiefung, und Diskussion des Inhalts der Vorlesung Dynamische Erde I.
Skriptwerden abgegeben.
LiteraturGrotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed.
Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage.
Voraussetzungen / BesonderesUebungen und Kurzexkursionen in Kleingruppen (10-15 Studenten), die von Hilfsassistierenden geleitet werden. Anhand von angewandten Fragestellungen und Fallstudien werden konkrete Besipiele erdwissenschaftlicher Themen diskutiert. Beschreibung und Interpretation der wichtigsten Gesteine in Handstücken. Verschiedene Kurzexkursionen in die Region Zürich erlauben das direkte Erfahren erdwissenschaftlicher Prozesse (z. Bsp. Oberflächenprozesse) und das Erkennen von erdwissenschaftlichen Fragestellungen und Lösungen in der heutigen Gesellschaft (z. Bsp. Bausteine, Wasser). Das Arbeiten in Kleingruppen ermöglicht auch die Diskussion und das Erarbeiten aktueller erdwissenhaftlicher Themen.
Weitere obligatorische Fächer Basisjahr
NummerTitelTypECTSUmfangDozierende
529-0030-00LPraktikum Chemie Belegung eingeschränkt - Details anzeigen O3 KP6PN. Kobert, A. de Mello, M. H. Schroth
KurzbeschreibungIm Praktikum Chemie werden grundlegende Techniken der Laborarbeit erlernt.
Die Experimente umfassen sowohl analytische als auch präparative Aufgaben. So werden z. B. Boden-und Wasserproben analysiert, ausgewählte Synthesen durchgeführt, und die Arbeit
mit gasförmigen Substanzen im Labor wird vermittelt.
LernzielEinblick in die experimentelle Methodik der Chemie: Verhalten im
Labor, Umgang mit Chemikalien. Beobachten und Beschreiben grundlegender chemischer Reaktionen.
InhaltNatürliche und künstliche Stoffe: Merkmale, Gruppierungen,
Persistenz. Solvatation: vom Wasser bis zum Erdöl.
Protonenübertragungen. Lewis-Säuren und Basen: Metallzentren und
Liganden. Elektrophile C-Zentren und nukleophile Reaktanden.
Mineralbildung. Redoxprozesse: Uebergangsmetallkomplexe. Gase der
Atmosphäre.
SkriptDas Skript zum Praktikum und die Versuchsanleitungen werden
auf einer eigenen homepage zugänglich gemacht.
Die entsprechenden Informationen werden am 1. Semestertag bekanntgegeben.
LiteraturDie genaue Vorbereitung anhand des Praktikums- und des Vorlesungsskripts
ist Voraussetzung für die Teilnahme am Praktikum.
Voraussetzungen / BesonderesSchutzkonzept: https://chab.ethz.ch/studium/bachelor1.html
Repetition Basisjahr Erd- und Klimawissenschaften BSc
NummerTitelTypECTSUmfangDozierende
900-9011-00LRepetition Basisjahr Erd- und Klimawissenschaften BSc Belegung eingeschränkt - Details anzeigen 0 KPkeine Angaben
Kurzbeschreibung
Lernziel
Grundlagenfächer II
Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
402-0000-03LPraktikum Physik für Studierende in Erdwissenschaften Information
Einschreibung nur unter https://www.lehrbetrieb.ethz.ch/laborpraktika.
Keine Belegung über myStudies notwendig. Alle weiteren Informationen siehe: https://ap.phys.ethz.ch

Zum Praktikum werden nur Studierende ab dem 3. Semester BSc Erdwissenschaften zugelassen.
O2 KP4PA. Biland, M. Doebeli
KurzbeschreibungAuseinandersetzung mit den grundlegenden Problemen des Experimentes. Durch selbstständige Durchführung physikalischer Versuche aus Teilbereichen der Elementarphysik wird der Einsatz von und der Umgang mit Messinstrumenten sowie die korrekte Auswertung und Beurteilung der Beobachtungen erlernt. Die Physik als persönliches Erlebnis spielt dabei eine wichtige Rolle.
LernzielDie Arbeit im Laboratorium bildet einen wichtigen Teil der modernen naturwissenschaftlichen Ausbildung. Übergeordnetes Thema des Praktikums ist die Auseinandersetzung mit den grundlegenden Problemen des Experimentes. Am Beispiel einfacher Aufgaben sollen vor allem folgende Gesichtspunkte berücksichtigt werden:

- der praktische Aufbau des Experimentes und die Kenntnis der Messmethoden
- der Einsatz von und der Umgang mit Messinstrumenten
- die korrekte Auswertung und Beurteilung der Beobachtungen
- Vertiefung der Kenntnisse in Teilbereichen der Elementarphysik
- Physik als persönliches Erlebnis.

Über diese Zielsetzung hinaus bezwecken die speziell für die Bachelor Studiengänge Erdwissenschaften, Lebensmittelwissenschaft und Umweltnaturwissenschaften aus dem etablierten Physikpraktikum für Anfänger ausgewählten Versuche zusammen mit einigen neuen Versuchen folgende Aspekte zu beleuchten:

- Physikalische Prozesse mit besonderer Bedeutung für Vorgänge in der Umwelt
- Beziehung physikalischer Prozesse zu chemischen und biologischen Phänomenen.
InhaltFehlerrechnung, 9 ausgewählte Versuche zu folgenden Themen:

Transversalschwingung einer Saite, Mechanische Resonanz, Innere Reibung in Flüssigkeiten, Absoluter Nullpunkt der Temperaturskala, Universelle Gaskonstante, Spezifische Verdampfungswärme, Spezifische Wärme, Interferenz und Beugung, Drehung der Polarisationsebene, Spektrale Absorption, Energieverteilung im Spektrum, Spektroskopie, Leitfähigkeit eines Elektrolyten, Elektrische Leitfähigkeit und Wärmeleitfähigkeit, Radioaktivität, Radioaktive Innenluft, Dichte und Leitfähigkeit, Fluss durch ein poröses Medium, Lärm.

Die Auswahl der Versuche kann zwischen den verschiedenen Studiengängen variieren.
SkriptAnleitungen zum Physikalischen Praktikum
Prüfungsblock 1
NummerTitelTypECTSUmfangDozierende
402-0063-00LPhysik IIO5 KP3V + 1UA. Vaterlaus
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik anhand von Demonstrationsexperimenten: Elektromagnetismus, Brechung und Beugung von Wellen, Elemente der Quantenmechanik mit Anwendung auf die Spektroskopie, Thermodynamik, Phasenumwandlungen, Transportphänomene. Wo immer möglich werden Anwendungen aus dem Bereich des Studienganges gebracht.
LernzielFörderung des wissenschaftlichen Denkens. Es soll die Fähigkeit entwickelt werden, beobachtetete physikalische Phänomene mathematisch zu modellieren und die entsprechenden Modelle zu lösen.
SkriptSkript wird verteilt.
LiteraturFriedhelm Kuypers
Physik für Ingenieure und Naturwissenschaftler
Band 2 Elektrizität, Optik, Wellen
Wiley-VCH, 2012
ISBN 3527411445, 9783527411443

Douglas C. Giancoli
Physik
3. erweiterte Auflage
Pearson Studium

Hans J. Paus
Physik in Experimenten und Beispielen
Carl Hanser Verlag, München, 2002, 1068 S.

Paul A. Tipler
Physik
Spektrum Akademischer Verlag, 1998, 1522 S., ca Fr. 120.-

David Halliday Robert Resnick Jearl Walker
Physik
Wiley-VCH, 2003, 1388 S., Fr. 87.- (bis 31.12.03)

dazu gratis Online Ressourcen (z.B. Simulationen): www.halliday.de
651-3400-00LGeochemie I
Dieser Kurs ersetzt 651-3400-00 Geochemie. Sofern Geochemie absolviert wurde, darf der Kurs nicht belegt werden.
O4 KP3GM. Schönbächler, D. Vance
KurzbeschreibungEinführung in die Geochemie und ihrer Anwendungen für das Studium des Urspungs und der Entwicklung von Erde und Planeten
LernzielGewinnen eines Überblicks geochemischer Methoden in verschiedenen Gebieten der Erdwissenschaften, und wie diese Methoden benutzt werden, um geologische Prozesse in Erdmantel, Erdkruste, Ozeanen und Atmosphäre zu studieren.
InhaltDieser Kurs ist eine Einleitung zur Geochemie mit einem speziellen Fokus auf den Grundkonzepten, die in diesem sich schnell entwickelnden Fachgebiet verwendet werden. Der Kurs beschäftigt sich mit der Toolbox des Geochemikers: Die grundlegenden chemischen und atomaren Eigenschaften der Elemente aus der Periodentabelle sowie deren Verwendung zur Formulierung wichtiger Fragen in den Erdwissenschaften. Es werden wichtige Konzepte, welche im Fest-Lösungs-Gas Gleichgewicht verwendet werden, eingeführt. Die Konzepte von chemischen Reservoiren und der geochemischen Kreisläufe werden anhand des Kohlenstoff-Kreislaufs eingeführt. Des weitern beschäftigt sich der Kurs mit geologischen Anwendungen in den Bereichen von Niedrig- und Hochtemperaturgeochemie. Dazu gehört die Bildung von Kontinenten, die Differentiation der Erde, sowie die Geochemie von Ozeanwasser und kontinentalen Wässern.
SkriptDie Folien zur Vorlesung werden online zur Verfügung gestellt.
LiteraturH. Y. McSween et al.: Geochemistry - Pathways and Processes,
2nd ed. Columbia Univ. Press (2003)

William White: Geochemistry, Wiley-Blackwell Chichester (2013)
Voraussetzungen / BesonderesVoraussetzung: Chemische Thermodynamik; Grundwissen anorganische Chemie und Physik
701-0023-00LAtmosphäre Information O3 KP2VE. Fischer, T. Peter
KurzbeschreibungGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
LernzielVerständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre.
InhaltGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
SkriptSchriftliche Unterlagen werden abgegeben.
Literatur- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
Prüfungsblock 2
NummerTitelTypECTSUmfangDozierende
701-0071-00LMathematik III: SystemanalyseO4 KP2V + 1UR. Knutti, I. Medhaug, L. Brunner, S. Schemm, H. Wernli
KurzbeschreibungIn der Systemanalyse geht es darum, durch ausgesuchte praxisnahe Beispiele die in der Mathematik bereit gestellte Theorie zu vertiefen und zu veranschaulichen. Konkret behandelt werden: Dynamische lineare Boxmodelle mit einer und mehreren Variablen; Nichtlineare Boxmodelle mit einer oder mehreren Variablen; zeitdiskrete Modelle, und kontinuierliche Modelle in Raum und Zeit.
LernzielErlernen und Anwendung von Konzepten (Modellen) und quantitativen Methoden zur Lösung von umweltrelevanten Problemen. Verstehen und Umsetzen des systemanalytischen Ansatzes, d.h. Erkennen des Kernes eines Problemes - Abstraktion - Quantitatives Erfassen - Vorhersage.
Inhalthttps://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html
SkriptFolien werden über die Kurswebsite zur Verfügung gestellt.
LiteraturImboden, D. and S. Koch (2003) Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag.

https://link.springer.com/book/10.1007%2F978-3-642-55667-8
651-3543-00LGeophysik I
Dieser Kurs ersetzt 651-3543-00 Seismologie. Sofern Seismologie absolviert wurde, darf Geophysik I nicht absolviert werden.
O4 KP2V + 1UD. Giardini, M. O. Saar
KurzbeschreibungAllgemeine Kenntnisse in Seismologie.
LernzielAllgemeine Kenntnisse in Seismologie.
651-3507-00LEinführung in die Ozeanographie und HydrogeologieO3 KP2VD. Vance, M. O. Saar
KurzbeschreibungThis course is designed to provide an introduction to hydrogeology and oceanography for all Earth Science students at ETH. It provides an overview of the physical controls on water flow in streams, aquifers, and the oceans. It also deals with the basics of groundwater chemistry, biogeochemical cycling in the oceans, the role of the oceans as carbon reservoirs and their dynamic redox state.
LernzielTo understand and describe the basic principles of the hydrologic cycle and water flow in streams and aquifers.

To conduct simple calculations of water transfer in streams and aquifers as well as of flood frequencies and magnitudes.

To discuss surface and groundwater as a water resource.

To interpret different ion distributions in aquifers in terms of bacic water chemistry, fluid-mineral reactions, water contamination, and water origin.

To understand the major features of ocean basins and the tectonic controls on their structure.

To identify the major controls on the temperature, salinity and density structure of the oceans.

To describe how these controls interact to drive surface and interior ocean circulation.

To interpret different kinds of element distribution in the oceans in terms of basic chemistry, sinks, sources and internal biogeochemical cycling.

To discuss the cycles of carbon and oxygen in the ocean, with a view to the critical analysis of how the oceans respond to, cause and record the dynamics of these cycles in Earth history.
InhaltThis course provides an introduction to oceanography and hydrogeology, with a special focus on the basic physicochemical concepts that control the properties and behaviour of two major reservoirs of water on Earth.

The hydrogeology component will: 1) describe the hydrologic cycle, with a focus on the importance of groundwater to society; introduce the basic physical aspects of groundwater flow, including Darcy's law, hydraulic head, hydraulic conductivity, aquifers; 2) describe the basics of groundwater chemistry, including major ions and mean meteoric water line, basics of groundwater contamination; 3) introduce the interface with the oceans, including hydrothermal circulation at mid-ocean ridges, ocean-water intrusion into groundwater at coasts.

The oceanography component will: 1) provide an overview of the physical circulation of the oceans, including its importance for heat transfer around the surface of the Earth and for climate; 2) describe the basic processes that control the chemistry of the oceans, including its temporal and spatial variability; 3) introduce some simple concepts in biological oceanography, including the dependence of ocean ecology on nutrient distributions. There will be a specific focus on how the physics, chemistry and biology of the ocean might have changed through Earth history, and the impact of oceanic processes on Earth's climate.
SkriptVorhanden
LiteraturTalley, L.D., Pickard, G.L., Emery, W.J. and Swift, J.H. Descriptive Physical Oceanography, an Introduction. (2011) Online textbook, available at http://www.sciencedirect.com/science/book/9780750645522.

Libes, S.M. (2009) Introduction to marine biogeochemistry. 2nd edition. Academic Press
Voraussetzungen / BesonderesChemie I and II, Physik I and II, Mathematik I and II.
Allgemeine erdwissenschaftliche Fächer
NummerTitelTypECTSUmfangDozierende
651-4143-00LGeobiology Belegung eingeschränkt - Details anzeigen O3 KP2V + 1UT. I. Eglinton, C. Magnabosco, C. Welte, S. Wohlwend
KurzbeschreibungWir studieren Spuren in der Lithosphäre, die Organismen im Verlaufe der Erdgeschichte hinterlassen haben und mineralische Bestandteile, die durch den Einfluss biologischer Prozesse gebildet oder als Quellen von Energie und Nährstoffen genutzt werden. Lebensspuren aus der Vergangenheit werden mit der Entwicklung der Vielfalt von Lebewesen in Zusammenhang gebracht
LernzielDie Lehrveranstaltung befähigt die Studierenden, Fragen über die Entstehung und die Entwicklung von Leben auf der Erde zu stellen, Hypothesen aufzugreifen und neue methodische Ansätze zu entwickeln. Diese werden mit Beobachtungen, Übungen und mathematischen Modellen überprüft. Die geobiologischen Grundlagen ermöglichen den Studierenden, Erkenntnisse, die ihnen in weiterführenden Lehrveranstaltungen vermittelt werden, in Fragestellungen zur Erdgeschichte einzuordnen. Sie lernen, die moderne geologische Umwelt besser zu verstehen und, wo nötig, biogeochemisch fundierte und verantwortungsvolle technische Eingriffe und Schutzmassnahmen zu empfehlen.
InhaltIm Mittelpunkt stehen (a) erdgeschichtlich bedeutsame geobiochemische Zyklen in aquatischen und terrestrischen Ökosystemen, (b) Biosynthesen und katabolische Prozesse, die Leben ermöglichen, (c) die Organismen, die diese regulieren und geochemische Zyklen in Gang halten, und (d) chemische Signale vergangenen Lebens, die in Sedimentgesteinen erhalten geblieben sind.
Dazu müssen wir verstehen
-- aus welchen Elementen und Molekülen biologische Zellen und deren Bestandteile aufgebaut sind,
-- wie Zellen funktionieren und welche Lebensweisen Organismen entwickelt haben,
-- wo welche Organismen existieren können und welche Faktoren ihr Vorkommen selektioniert,
-- woher biologisch verwertbare Energie stammt und wie sie unter verschiedenen Bedingungen genutzt werden kann,
-- wie biologischer Stoffwechsel Umweltveränderungen bewirkt,
-- welche Stoffwechselprodukte zu Signalen in Gesteinsarchiven führen können, wie sich Biomoleküle and Elemente nach deren Einlagerung in Sedimenten verhalten,
-- wie organische und anorganische Stoffe in der Biosphäre zyklisiert werden und nach welchen grundlegenden Prinzipien biogeochemische Kreisläufe funktionieren,
-- wie sich biologische "Innovationen" im Verlaufe der Zeit entwickelt, erhalten, und als Folge von Umweltveränderungen verändert haben.

Angewandte Fallstudien, welche die Inhalte ergänzen und illustrieren:
-- Wissenschaftliche Anwendungen geobiologischer Erkenntnisse finden wir in der Mikrobiellen Ökologie, der Geochemie, der Paläontologie, der Sedimentologie, der Petrologie, der Ozeanforschung, den Umweltwissenschaften, der Astrobiologie und der Archäologie.
-- Praktische Anwendungen aus der Geobiologie fliessen in die Bereiche Altlastensanierung, Schaffung von sicheren Deponien, Grundwasserüberwachung, Abwasserreinigung, Gewinning von und Prospektion für fossile Kohlenstoffreserven, Bodenwiederherstellung, Mineralienabbau und Laugung, Forensik und Geomedizin ein.
651-3301-00LKristalle und Mineralien Belegung eingeschränkt - Details anzeigen O4 KP2V + 1.5US. Petitgirard, E. Reusser, G. Spiekermann
KurzbeschreibungQualitatives und teilweise quantitatives Verständnis für den Aufbau von Kristallen und Mineralien, für die Zusammenhänge zwischen chemischer Zusammensetzung, Kristallstruktur und physikalischen Eigenschaften, für das Wachstum von Kristallen sowie wichtiger identifikationsrelevanter makroskopischer Eigenschaften; selbständige Identifikation der rund 70 wichtigsten Mineralarten.
LernzielQualitatives und teilweise quantitatives Verständnis für den Aufbau von Kristallen und Mineralien, für die Zusammenhänge zwischen chemischer Zusammensetzung, Kristallstruktur und physikalischen Eigenschaften, für das Wachstum von Kristallen sowie wichtiger identifikationsrelevanter makroskopischer Eigenschaften; selbständige Identifikation der rund 70 wichtigsten Mineralarten.
Inhalto Symmetrien und Ordnung, Punktgruppen, Translationsgruppen, Raumgruppen.
o einfache Strukturtypen, dichte Kugelpackungen, Strukturbestimmende Faktoren
o Chemisch Bindungen, Beziehungen zwischen Struktur und Eigenschaften eine Kristalls.
o Grundlagen von Thermodynamik und Computersimulationen in der Kristallographie.
o Einführung in die Mineralogie und Mineralsystematik.
o Praktikum in Mineralbestimmen aufgrund makroskopischer Eigenschaften.
Literatur1. An Introduction to Mineral Sciences. (1992).
Andrew Putnis.
2. Kleber, W., Bautsch, H. J., and Bohm, J. (1998) – Einführung in die Kristallographie, Verlag Technik GmbH Berlin.
3. Minerals. (2004).
Hans-Rudolf Wenk, Andrei Bulakh
651-4271-00LErdwissenschaftliche Datenanalyse und Visualisierung mit Matlab Belegung eingeschränkt - Details anzeigen O3 KP3GG. De Souza, A. Obermann, S. Wiemer
KurzbeschreibungDie Vorlesung und dazugehörige Übung geben den Studierenden eine Einführung in die Konzepte und Werkzeuge der wissenschaftlichen Datenanalyse. Anhand von praktischen erdwissenschaftlichen Problemstellungen werden in Kleingruppen und Einzelarbeit Aufgaben von wachsender Komplexität mit der Software MATLAB gelöst. Dabei lernen die Studierenden auch, Datensätze effektvoll zu visualisieren.
LernzielDie folgenden Konzepte werden vorgestellt:
- Arbeiten mit Matrizen und Arrays
- Programmieren und Algorithmenentwicklung
- Effektvolle Datenanalyse und Visualisierung in 2D und 3D
- Animationen sinnvoll einsetzen
- Einen Datensatz statistisch erfassen
- Regressionsanalysen
- Testen von Hypothesen
651-3402-00LMagmatismus und Metamorphose I Belegung eingeschränkt - Details anzeigen O4 KP2V + 1UM. W. Schmidt, P. Ulmer
KurzbeschreibungDer Kurs behandelt die Entstehung und Differentiation magmatischer Gesteine sowie die Metamorphose magmatischer und sedimentärer Gesteine als Produkte geodynamischer Prozesse im Erdinnern.
LernzielDer Kurs stellt eine Verknüpfung von Petrographie, Geochemie, experimenteller und theoretischer Petrologie dar mit dem Ziel fundamentale magmatische und metamorphe Prozesse in zeitlichen und räumlichen Abläufen darzustellen. Es werden folgende Themen und Zusammenhänge besprochen (1) Magmabildung im Mantel und der Kruste, Differentiationsprozesse und Platznahme in der Kruste und an der Oberfläche sowie (2) Metamorphose magmatischer und sedimentärer Gesteine. Dazu werden die wichtigsten magmatischen und metamorphen Gesteinsserien und ihre gegenseitigen Beziehungen im Rahmen der globalen Tektonik betrachtet. Die Betrachtungsweise ist vorwiegend qualitativ. Eine Quantifizierung magmatischer und metamorpher Prozesse anhand des Mineralbestandes, mittels der Geochemie, Phasenpetrologie und thermodynamischer Ansätze wird in den Übungen und Hausaufgaben praktisch vertieft.

Grundlegende Kenntnisse über gesteinsbildende Mineralien und die Klassifikation der magmatischen und metamorphen Gesteine werden vorausgesetzt und in den Übungen weiter vertieft.
InhaltEinführung – Historische Entwicklung – Magmatismus-Metamorphose-Tektonik
Erdmantel – Zusammensetzung, Metamorphose, tiefer Mantel
Partielle Aufschmelzung im Erdmantel
Binäre und ternäre Subsolidus- und Schmelzphasendiagramme
Tholeiitischer Magmatismus – MORB und «Large Igneous Provinces» (LIP)
Subduktionszonen – Magmatismus an konvergenten Plattengrenzen, der H2O-Zyklus
Geochemie in der magmatischen Petrologie
Magmatische Differentiation an konvergenten Plattengrenzen
Metamorphose pelitischer Gesteine (Metapelite) und Krustenaufschmelzung
Stoffkreisläufe an konvergenten Plattengrenzen
SkriptVorlesungsunterlagen und Hausaufgaben werden abgegeben und weiteres Material auf Moodle zur Verfügung gestellt.
LiteraturAls zusätzliches, unterrichtsbegleitendes Material empfehlen wir das Buch von J.D. Winter «Principles of Igneous and metamorphic petrology», Prentice Hall, 2001.
Voraussetzungen / Besonderes8 Hausaufgaben (von 12) muessen hinreichend geloest abgegeben werden, die Abgabe von 10 hinreichend gelösten Hausaufgaben wird mit einer Erhöhung der Gesamtnote um 0.25 angerechnet.

Die Semester-Endpruefung findet in den beiden dafuer vorgesehenen Januarwochen statt.
Integrierte Erdsysteme
NummerTitelTypECTSUmfangDozierende
651-4180-02LIntegrierte Erdsysteme II Belegung eingeschränkt - Details anzeigen O5 KP4G + 1UH. Stoll, D. Vance, S. Willett
KurzbeschreibungThe surface Earth is often thought of as a set of interacting systems, often with feedbacks between them. These interacting systems control the tectonics, geomorphology, climate, and biology of the surface Earth. To fully understand the nature of the Earth System, including the controls on its past evolution, its present state, and its future, an integrated perspective is required.
LernzielTo introduce students to an integrated view of the surface Earth, uniting perspectives from different disciplines of the earth sciences.

To encourage students in the critical analysis of data and models in Earth Science.
InhaltPlanet Earth has had a complex history since its formation ~4.6 billion years ago. The surface Earth is often thought of as a set of interacting systems, often with positive and negative feedbacks between them. These interacting systems control the tectonics, geomorphology, climate, and biology of the surface Earth. To fully understand the nature of the Earth System, including the controls on its past evolution, its present state, and its future, an integrated perspective is required. This is a subject that pulls in observations and models from many areas of the Earth Sciences, including geochemistry, geophysics, geology and biology. The main goal of the course is to convey this integrated view of the surface of our planet.

We will achieve this integrated view through a series of lectures, exercises, and tutorials. We take as our framework some of the key events in Earth history, encouraging understanding of the controlling processes through integrated observations, ideas and models from disciplines across science.
Vertiefungen
Vertiefung Geologie und Geophysik
Für Beratungen in der Vertiefung Geologie und Geophysik stehen Dr. Vincenzo Picotti (Geologie) und Dr. Jérôme Noir (Geophysik) zur Verfügung.
Methoden
NummerTitelTypECTSUmfangDozierende
651-3527-00LErdwissenschaftliches Kartenpraktikum II Belegung eingeschränkt - Details anzeigen W+2 KP2PJ. Ruh
KurzbeschreibungLesen und Interpretation von geologischen Karten.
LernzielAlle teilnehmenden Studierenden können:

- Komplexe geologische Karten lesen und verstehen;
- Informationen reeller Fallbeispiele bewerten, auswählen, und projezieren;
- Tektonische Übersichtsskizzen erstellen und aussagekräftige Profile konstruieren;
InhaltFortgeschrittene Analyse von geologischen Karten und Profilzeichnungen. Schwerpunkte: Normalbrüche im Rheintalgraben, Val de Ruz (Jura) und Helvetische Decken im Säntisgebiet. Rekonstruktion der geologischen Geschichte der Kartengebiete. Bezüge zur Geologie der Schweiz.
SkriptAufgabenstellungen und Anleitungen werden ausgegeben.
LiteraturAls Referenz - nicht vorausgesetzt (Bibliothek):

- Bennison, G.M., and Mosley, K.A., 1997. An introduction to geological structures and maps. Arnold, London.
- Lisle, R.J., 1995. Geological structures and maps. Butterworth Heinemann
- Powell, D., 1995. Interpretation geologischer Strukturen durch Karten. Springer, Berlin
- Wijermars, R., 1997. Structural geology and map interpretation. Alboran Science Publishing.
Voraussetzungen / BesonderesVoraussetzung: Erdwissenschaftliches Kartenpraktikum I
401-0624-00LMathematik IV: Statistik Belegung eingeschränkt - Details anzeigen W+4 KP2V + 1UJ. Ernest
KurzbeschreibungEinführung in einfache Methoden und grundlegende Begriffe von Statistik und Wahrscheinlichkeitsrechnung für Naturwissenschaftler. Die Konzepte werden anhand einiger Daten-Beispiele eingeführt.
LernzielFähigkeit, aus Daten zu lernen; kritischer Umgang mit Daten und mit Missbräuchen der Statistik; Grundverständnis für die Gesetze des Zufalls und stochastisches Denken (Denken in Wahrscheinlichkeiten); Fähigkeit, einfache und grundlegende Methoden der Analytischen (Schlussfolgernden) Statistik (z. B. diverse Tests) anzuwenden.
InhaltBeschreibende Statistik (einschliesslich graphischer Methoden).
Einführung in die Wahrscheinlichkeitsrechnung (Grundregeln, Zufallsvariable, diskrete und stetige Verteilungen, Ausblick auf Grenzwertsätze). Methoden der Analytischen Statistik: Schätzungen, Tests (einschliesslich Binomialtest, t-Test, Vorzeichentest, F-Test, Wilcoxon-Test), Vertrauensintervalle, Prognoseintervalle, Korrelation, einfache und multiple lineare Regression.
SkriptSkript zur Vorlesung ist erhältlich.
LiteraturStahel, W.: Statistische Datenanalyse. Vieweg 1995, 3. Auflage 2000 (als ergänzende Lektüre)
Voraussetzungen / BesonderesDie Übungen (ca. die Hälfte der Kontaktstunden; einschliesslich Computerübungen) sind ein wichtiger Bestandteil der Lehrveranstaltung.

Voraussetzungen: Mathematik I, II
651-4031-00LGeographic Information Systems Belegung eingeschränkt - Details anzeigen W+3 KP4GA. Baltensweiler, M. Hägeli-Golay
KurzbeschreibungIntroduction to the architecture and data processing capabilities of geographic information systems (GIS). Practical application of spatial data modeling and geoprocessing functions to a selected project from the earth sciences.
LernzielKnowledge of the basic architecture and spatial data handling capabilities of geographic information systems.
InhaltTheoretical introduction to the architecture, modules, spatial data types and spatial data handling functions of geographic information systems (GIS). Application of data modeling principles and geoprocessing capabilities using ArcGIS: Data design and modeling, data acquisition, data integration, spatial analysis of vector and raster data, particular functions for digital terrain modeling and hydrology, map generation and 3D-visualization.
SkriptIntroduction to Geographic Information Systems, Tutorial: Introduction to ArcGIS Desktop
LiteraturLongley, P. A., M. F. Goodchild, D. J. Maguire, and D. W. Rhind (2015): Geographic Information Systems and Science. Fourth Edition. John Wiley & Sons, Chichester, England.

DeMers, M. N. (2009): Fundamentals of Geographic Information Systems. John Wiley & Sons, Hoboken, N.J., USA.
  •  Seite  1  von  3 Nächste Seite Letzte Seite     Alle