Search result: Catalogue data in Spring Semester 2020

Science, Technology, and Policy Master Information
Minor in Natural Sciences and Engineering (ONLY for Regulations 2019)
Data and Computer Science
252-3900-00LBig Data for Engineers Information
This course is not intended for Computer Science and Data Science MSc students!
W6 credits2V + 2U + 1AG. Fourny
AbstractThis course is part of the series of database lectures offered to all ETH departments, together with Information Systems for Engineers. It introduces the most recent advances in the database field: how do we scale storage and querying to Petabytes of data, with trillions of records? How do we deal with heterogeneous data sets? How do we deal with alternate data shapes like trees and graphs?
ObjectiveThis lesson is complementary with Information Systems for Engineers as they cover different time periods of database history and practices -- you can even take both lectures at the same time.

The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
ContentThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe.

It targets specifically students with a scientific or Engineering, but not Computer Science, background.

We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores

- logical storage: document stores (MongoDB), column stores (HBase)

- data formats and syntaxes (XML, JSON, RDF, CSV, YAML, protocol buffers, Avro)

- data shapes and models (tables, trees)

- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)

- an overview of functional, declarative programming languages across data shapes (SQL, JSONiq)

- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)

- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)

- resource management (YARN)

- what a data center is made of and why it matters (racks, nodes, ...)

- underlying architectures (internal machinery of HDFS, HBase, Spark)

- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)

- applications.

Large scale analytics and machine learning are outside of the scope of this course.
LiteraturePapers from scientific conferences and journals. References will be given as part of the course material during the semester.
Prerequisites / NoticeThis course is not intended for Computer Science and Data Science students. Computer Science and Data Science students interested in Big Data MUST attend the Master's level Big Data lecture, offered in Fall.

Requirements: programming knowledge (Java, C++, Python, PHP, ...) as well as basic knowledge on databases (SQL). If you have already built your own website with a backend SQL database, this is perfect.

Attendance is especially recommended to those who attended Information Systems for Engineers last Fall, which introduced the "good old databases of the 1970s" (SQL, tables and cubes). However, this is not a strict requirement, and it is also possible to take the lectures in reverse order.
227-0558-00LPrinciples of Distributed Computing Information W7 credits2V + 2U + 2AR. Wattenhofer, M. Ghaffari
AbstractWe study the fundamental issues underlying the design of distributed systems: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques.
ObjectiveDistributed computing is essential in modern computing and communications systems. Examples are on the one hand large-scale networks such as the Internet, and on the other hand multiprocessors such as your new multi-core laptop. This course introduces the principles of distributed computing, emphasizing the fundamental issues underlying the design of distributed systems and networks: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques, basically the "pearls" of distributed computing. We will cover a fresh topic every week.
ContentDistributed computing models and paradigms, e.g. message passing, shared memory, synchronous vs. asynchronous systems, time and message complexity, peer-to-peer systems, small-world networks, social networks, sorting networks, wireless communication, and self-organizing systems.

Distributed algorithms, e.g. leader election, coloring, covering, packing, decomposition, spanning trees, mutual exclusion, store and collect, arrow, ivy, synchronizers, diameter, all-pairs-shortest-path, wake-up, and lower bounds
Lecture notesAvailable. Our course script is used at dozens of other universities around the world.
LiteratureLecture Notes By Roger Wattenhofer. These lecture notes are taught at about a dozen different universities through the world.

Distributed Computing: Fundamentals, Simulations and Advanced Topics
Hagit Attiya, Jennifer Welch.
McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6

Introduction to Algorithms
Thomas Cormen, Charles Leiserson, Ronald Rivest.
The MIT Press, 1998, ISBN 0-262-53091-0 oder 0-262-03141-8

Disseminatin of Information in Communication Networks
Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, Walter Unger.
Springer-Verlag, Berlin Heidelberg, 2005, ISBN 3-540-00846-2

Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes
Frank Thomson Leighton.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 1991, ISBN 1-55860-117-1

Distributed Computing: A Locality-Sensitive Approach
David Peleg.
Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8
Prerequisites / NoticeCourse pre-requisites: Interest in algorithmic problems. (No particular course needed.)
363-1091-00LSocial Data ScienceW3 credits2GD. Garcia Becerra
AbstractSocial Data Science is introduced as a set of techniques to analyze human behavior and social interaction through digital traces.
The course focuses both on the fundamentals and applications of Data Science in the Social Sciences, including technologies for data retrieval, processing, and analysis with the aim to derive insights that are interpretable from a wider theoretical perspective.
ObjectiveA successful participant of this course will be able to
- understand a wide variety of techniques to retrieve digital trace data from online data sources
- store, process, and summarize online data for quantitative analysis
- perform statistical analyses to test hypotheses, derive insights, and formulate predictions
- implement streamlined software that integrates data retrieval, processing, statistical analysis, and visualization
- interpret the results of data analysis with respect to theoretical and testable principles of human behavior
- understand the limitations of observational data analysis with respect to data volume, statistical power, and external validity
ContentSocial Data Science (SDS) provides a broad approach to the quantitative analysis of human behavior through digital trace data.
SDS integrates the implementation of data retrieval and processing, the application of statistical analysis methods, and the interpretation of results to derive insights of human behavior at high resolutions and large scales.
The motivation of SDS stems from theories in the Social Sciences, which are addressed with respect to societal phenomena and formulated as principles that can be tested against empirical data.
Data retrieval in SDS is performed in an automated manner, accessing online databases and programming interfaces that capture the digital traces of human behavior.
Data processing is computerized with calibrated methods that quantify human behavior, for example constructing social networks or measuring emotional expression.
These quantities are used in statistical analyses to both test hypotheses and explore new aspects on human behavior.

The course starts with an introduction to Social Data Science and the R statistical language, followed by three content blocks: collective behavior, sentiment analysis, and social network analysis. The course ends with a datathon that sets the starting point of final student projects.

The course will cover various examples of the application of SDS:
- Search trends to measure information seeking
- Popularity and social impact
- Evaluation of sentiment analysis techniques
- Quantitative analysis of emotions and social media sharing
- Twitter social network analysis

The lectures include theoretical foundations of the application of digital trace data in the Social Sciences, as well as practical examples of data retrieval, processing, and analysis cases in the R statistical language from a literate programming perspective.
The block course contains lectures and exercise sessions during the morning and afternoon of five days.
Exercise classes provide practical skills and discuss the solutions to exercises that build on the concepts and methods presented in the previous lectures.
Lecture notesThe lecture slides will be available on the Moodle platform, for registered students only.
LiteratureSee handouts. Specific literature is provided for download, for registered students only.
Prerequisites / NoticeParticipants of the course should have some basic background in statistics and programming, and an interest to learn about human behavior from a quantitative perspective.

Prior knowledge of advanced R, information retrieval, or information systems is not necessary.

Exercise sessions build on technical and theoretical content explained in the lectures. Students need a working laptop with Internet access to perform guided exercises.

Course evaluation is based on short quizzes at the end of each day from Monday to Thursday (5% each for a total of 20%), a 45-minute exam during the last session (30%), and on the grade of a final project report (50%). Final projects can be done individually or in pairs. Final projects will be composed of a text report (max 6 pages) and the R code to generate the results. The deadline to deliver the final project will be at the end of the Easter break, approximately 2 months after the course.

The course takes place between Feb 10th and Feb 14th (both inclusive), from 9:15 to 12:00 and from 13:15 to 16:00.
252-0312-00LUbiquitous Computing Information W4 credits2V + 1AC. Holz, F. Mattern, S. Mayer
AbstractUnlike desktop computing, ubiquitous computing occurs anytime and everywhere, using any device, in any location, and in any format. Computers exist in different forms, from watches and phones to refrigerators or pairs of glasses.
Main topics: Smart environments, IoT, mobiles & wearables, context & location, sensing & tracking, computer vision on embedded systems, health monitoring, fabrication.
ObjectiveUnlike desktop computing, ubiquitous computing occurs anytime and everywhere, using any device, in any location, and in any format. Computers exist in different forms, from watches and phones to refrigerators or pairs of glasses.
Main topics: Smart environments, IoT, mobiles & wearables, context & location, sensing & tracking, computer vision on embedded systems, health monitoring, fabrication.
Lecture notesCopies of slides will be made available
LiteratureWill be provided in the lecture. To put you in the mood:
Mark Weiser: The Computer for the 21st Century. Scientific American, September 1991, pp. 94-104
  •  Page  1  of  1