# Search result: Catalogue data in Spring Semester 2020

Environmental Sciences Bachelor | ||||||

Bachelor Studies (Programme Regulations 2016) | ||||||

Natural Science and Technical Electives | ||||||

Methodes of Statistical Data Analysis | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

701-0104-00L | Statistical Modelling of Spatial Data | W | 3 credits | 2G | A. J. Papritz | |

Abstract | In environmental sciences one often deals with spatial data. When analysing such data the focus is either on exploring their structure (dependence on explanatory variables, autocorrelation) and/or on spatial prediction. The course provides an introduction to geostatistical methods that are useful for such analyses. | |||||

Objective | The course will provide an overview of the basic concepts and stochastic models that are used to model spatial data. In addition, participants will learn a number of geostatistical techniques and acquire familiarity with R software that is useful for analyzing spatial data. | |||||

Content | After an introductory discussion of the types of problems and the kind of data that arise in environmental research, an introduction into linear geostatistics (models: stationary and intrinsic random processes, modelling large-scale spatial patterns by linear regression, modelling autocorrelation by variogram; kriging: mean square prediction of spatial data) will be taught. The lectures will be complemented by data analyses that the participants have to do themselves. | |||||

Lecture notes | Slides, descriptions of the problems for the data analyses and solutions to them will be provided. | |||||

Literature | P.J. Diggle & P.J. Ribeiro Jr. 2007. Model-based Geostatistics. Springer. Bivand, R. S., Pebesma, E. J. & Gómez-Rubio, V. 2013. Applied Spatial Data Analysis with R. Springer. | |||||

Prerequisites / Notice | Familiarity with linear regression analysis (e.g. equivalent to the first part of the course 401-0649-00L Applied Statistical Regression) and with the software R (e.g. 401-6215-00L Using R for Data Analysis and Graphics (Part I), 401-6217-00L Using R for Data Analysis and Graphics (Part II)) are required for attending the course. | |||||

252-0842-00L | Introduction to Programming and Problem Solving Number of participants limited to 80. | W | 3 credits | 2V + 1U | D. Komm | |

Abstract | Core concepts of Computer Science and their implementation in Python. | |||||

Objective | The goals of the course are consolidating the knowledge about the programming language Python on the one hand, and learning about core concepts of computer science that are essential in algorithm design on the other hand. The focus is on computational thinking, that is, the ability to solve problems systematically by developing algorithms. Different strategies are introduced, analyzed theoretically, and implemented in Python. The combination of theory and practice is central in this course. | |||||

Content | - Repetition of basic programming concepts such as variables, lists, control structures, and loops - Reading in and visualizing data - Complexity theory - Sorting and searching - Dynamic programming - Recursion - Graph algorithms | |||||

Lecture notes | Lecture website: Link | |||||

Prerequisites / Notice | Recommendation: - Foundations of Computer Science (252-0852-00) - Application Oriented Programming Using Python (252-0840-01) | |||||

401-0102-00L | Applied Multivariate Statistics | W | 5 credits | 2V + 1U | F. Sigrist | |

Abstract | Multivariate statistics analyzes data on several random variables simultaneously. This course introduces the basic concepts and provides an overview of classical and modern methods of multivariate statistics including visualization, dimension reduction, supervised and unsupervised learning for multivariate data. An emphasis is on applications and solving problems with the statistical software R. | |||||

Objective | After the course, you are able to: - describe the various methods and the concepts behind them - identify adequate methods for a given statistical problem - use the statistical software R to efficiently apply these methods - interpret the output of these methods | |||||

Content | Visualization, multivariate outliers, the multivariate normal distribution, dimension reduction, principal component analysis, multidimensional scaling, factor analysis, cluster analysis, classification, multivariate tests and multiple testing | |||||

Lecture notes | None | |||||

Literature | 1) "An Introduction to Applied Multivariate Analysis with R" (2011) by Everitt and Hothorn 2) "An Introduction to Statistical Learning: With Applications in R" (2013) by Gareth, Witten, Hastie and Tibshirani Electronic versions (pdf) of both books can be downloaded for free from the ETH library. | |||||

Prerequisites / Notice | This course is targeted at students with a non-math background. Requirements: ========== 1) Introductory course in statistics (min: t-test, regression; ideal: conditional probability, multiple regression) 2) Good understanding of R (if you don't know R, it is recommended that you study chapters 1,2,3,4, and 5 of "Introductory Statistics with R" from Peter Dalgaard, which is freely available online from the ETH library) An alternative course with more emphasis on theory is 401-6102-00L "Multivariate Statistics" (only every second year). 401-0102-00L and 401-6102-00L are mutually exclusive. You can register for only one of these two courses. | |||||

401-6624-11L | Applied Time Series | W | 5 credits | 2V + 1U | M. Dettling | |

Abstract | The course starts with an introduction to time series analysis (examples, goal, mathematical notation). In the following, descriptive techniques, modeling and prediction as well as advanced topics will be covered. | |||||

Objective | Getting to know the mathematical properties of time series, as well as the requirements, descriptive techniques, models, advanced methods and software that are necessary such that the student can independently run an applied time series analysis. | |||||

Content | The course starts with an introduction to time series analysis that comprises of examples and goals. We continue with notation and descriptive analysis of time series. A major part of the course will be dedicated to modeling and forecasting of time series using the flexible class of ARMA models. More advanced topics that will be covered in the following are time series regression, state space models and spectral analysis. | |||||

Lecture notes | A script will be available. | |||||

Prerequisites / Notice | The course starts with an introduction to time series analysis that comprises of examples and goals. We continue with notation and descriptive analysis of time series. A major part of the course will be dedicated to modeling and forecasting of time series using the flexible class of ARMA models. More advanced topics that will be covered in the following are time series regression, state space models and spectral analysis. |

- Page 1 of 1