Search result: Catalogue data in Spring Semester 2020

Biology Bachelor Information
3. Year, 6. Semester
Block Courses
Registration for Block courses is mandatory. Please register under Link.
Registration period from 16.12.2019 - 06.01.2020

Please note the ETH admission criteria for the admission of ETH students to ETH block courses on the block course registration website under "allocation".
Block Courses in 1st Quarter of the Semester
From 18.2.2020 to 11.3.2020
NumberTitleTypeECTSHoursLecturers
551-0342-00LMetabolomics Restricted registration - show details
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.
W6 credits7GN. Zamboni, U. Sauer
AbstractThe course covers all basic aspects of metabolome measurements, from sample sampling to mass spectrometry and data analysis. Participants work in groups and independently perform and interpret metabolomic experiments.
ObjectivePerforming and reporting a metabolomic experiment, understanding pro and cons of mass spectrometry based metabolomics. Knowledge of workflows and tools to assist experiment interpretation, and metabolite identification.
ContentBasics of metabolomics: workflows, sample preparation, targeted and untargeted mass spectrometry, instrumentation, separation techniques (GC, LC, CE), metabolite identification, data interpretation and integration, normalization, QCs, maintenance.

Soft skills to be trained: project planning, presentation, reporting, independent working style, team work.
551-0339-00LMolecular Mechanisms of Cell Dynamics Restricted registration - show details
Number of participants limited to 13.

The enrolment is done by the D-BIOL study administration.
W6 credits7GE. Dultz, Y. Barral, U. Kutay, M. Peter, K. Weis
AbstractApplication of current strategies to study the dynamics of complex and highly regulated cellular processes.
ObjectiveThe students learn to evaluate and to apply current strategies to study the dynamics of complex and highly regulated cellular processes.
ContentDuring this Block-Course, the students will learn to (1) describe the important mechanisms and regulators of dynamic processes in cells, (2) perform standard lab techniques and quantitate dynamic cellular processes, (3) evaluate and compare experimental strategies and model systems, (4) independently search and critically evaluate scientific literature on a specific problem and present it in a seminar, and (5) formulate scientific concepts (preparation and presentation of a poster).
Students will work in small groups in individual labs on one research project (8 full days of practical work; every group of students will stay in the same lab during the entire course). The projects are close to the actual research carried out in the participating research groups, but with a clear connection to the subject of the course.
LiteratureDocumentation and recommended literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeThis course will be taught in english.
551-1516-00LNeuron-Glia Interactions and Myelination in Health and Disease Restricted registration - show details
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.
W6 credits7GU. Suter
AbstractThe course provides general basic insights and new perspectives in the development, plasticity and repair of the nervous system. The focus is on molecular, cellular and transgenic approaches.
ObjectiveThrough a combination of practical work with lectures, discussions, project preparations and presentations, the students learns basic principles of neural plasticity and repair in health and disease. The course is closely linked to ongoing research projects in the lab to provide the participants with direct insights into current experimental approaches and strategies.
551-0118-00LCell Biology of Plant-Fungus Interaction Restricted registration - show details
Number of participants limited to 5.

The enrolment is done by the D-BIOL study administration.
W6 credits7GC. Sánchez-Rodríguez
AbstractThe course is a collaboration of the Plant Cell Biology groups of ETHZ and UZH. The students will learn key concepts related with the remarkable ability of plants to adapt to challenges provided by their environment (both biotic, such as pathogens, and abiotic, like nutrient deficiencies). A multidisciplinary approach including molecular genetics, cell biology, biochemistry and bioinformatics tool
ObjectiveIn this course, students will get cell biological and molecular genetics insights into the developmental plasticity of plants to adapt to their environmental conditions using the model plant Arabidopsis thaliana. With this aim, they will actively participate in ongoing research projects tutored by doctoral students.
ContentStudents will be engaged in research projects aimed to understand the specialized mechanisms evolved by the plants to grow under challenging environments. In a lecture series, the theoretical background for the projects and their interrelationship is provided.
Students will design and perform experiments, evaluate experimental results, present their projects, and discuss recent publications to understand the relevance of their work in the context of the current state of plant development and stress response.
Lecture notesNo script
LiteratureThe recommended literature and list of individual reading assignments will be provided during the course
Prerequisites / NoticeAll general lectures will be held at ETH Centrum (LFW building). Students will be divided into small groups to carry out experiments at ETH (Central; LFW) and UZH (Botanical Garden)
  •  Page  1  of  1