Search result: Catalogue data in Spring Semester 2020

Environmental Engineering Master Information
Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional admission requirements.
NumberTitleTypeECTSHoursLecturers
101-0203-AALHydraulics I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-5 credits11RR. Stocker
AbstractThe course teaches the basics of hydromechanics, relevant for civil and environmental engineers.
ObjectiveFamiliarization with the basics of hydromechanics of steady state flows
ContentProperties of water, hydrostatics, continuity, Euler equation of motion, Navier Stokes euqation, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids-real fluids, boundary layer, pipe flow, open channel flow, flow in porous media, flow measurements, demonstration experiments in the lecture hall
Lecture notesScript and collection of problems available (in German)
LiteratureBollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin
102-0214-AALIntroduction to Urban Water Management Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RE. Morgenroth, M. Maurer
AbstractIntroduction to urban water management (water supply, urban drainage, wastewater treatment, sewage sludge treatment). Introduction to Urban Water Management is a self-study course.
ObjectiveThis course provides an introduction and an overview over the topics of urban water management (water supply, urban drainage, wastewater treatment, sewage sludge treatment). It supports the understanding of the interactions of the relevant technical and natural systems. Simple design models are introduced.
ContentOverview over the field of urban water management.
Introduction into systems analysis.
Characterization of water and water quality.
Requirement of drinking water, production of wastewater and pollutants
Production and supply of drinking water.
Urban drainage, treatment of combined sewer overflow.
Wastewater treatment, nutrient elimination, sludge handling.
Planning of urban water infrastructure.
Lecture notesFor more information about provided material, have a look at:
Link
LiteratureIn this self-study course the students must work through and understand selected sections from the following book

Viessman, W., Hammer, M.J. and Perez, E.M. (2009) Water supply and pollution control,
Pearson Prentice Hall, Upper Saddle River, NJ.

Students must understand and be able to discuss the required reading in a 30 min oral exam. The required reading includes the following:

- Read and know by heart: All chapters in Viessman et al (2009) except those listed below.
- Read and have basic overview but no detailed knowledge: Chapters 11.15 - 11.30, 14.15 - 14.24
- Not part of the required reading: Chapters 2, 3.1 - 3.9, 3.12, 3.13, 3.19, 3.20, 4.5, 4.6, 12.23 - 12.26, 12.31, 12.32, and 12.34.

This required reading and studying should correspond roughly the time invested in the course "Siedlungswasserwirtschaft GZ". Students are welcome to ask the assistants (Link) for help with questions they have regarding the reading.
Prerequisites / NoticeSome students joining the MSc program in Environmental Engineering at ETH Zürich have to take additional courses from our BSc program. The decision of what courses to take is done at the time of admission at ETH.

The course on "Introduction to Urban Water Management" is offered at ETH Zürich only in German. Students who can speak and understand German must take the course (Siedlungswasserwirtschaft GZ) and get a passing grade. For students that do not have sufficient German language skills there is a self-study course and they have to take an oral exam.

This course is required for further in depth courses in urban water management.

Prerequisite: Hydraulics I and Hydrology
102-0324-AALEcological Systems Analysis
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RS. Hellweg
AbstractThis course deals with the methodological basics and application of various environmental assessment tools.
ObjectiveAfter attending the lecture, students know environmental assessment tools, such as material flow analysis, risk assessment, and life cycle assessment. They can identify and apply the appropriate tool in a given situation. Also, they are able to critically assess existing studies.
Content- Material flow analysis
- Life cycle assessment
- Risk assessment
- Case studies
LiteratureLiterature to be studied is indicated on
Link
Prerequisites / NoticeSelf-study course.
102-0325-AALWaste Management
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RC. Leitzinger
AbstractIntroduction into the problems of waste handling with the goal to get the ability of seeing and improving the influence of commodities and products with there packaging to the environment - as they are becoming waste. Knowing the different mechanical and chemical processes, which are applicable in the field of waste management.
Objective*To reconstruct the historical development of the waste problems (C2)
*To know the problems of a modern waste management (C4)
*To see and to improve the influence of commodities and products to the environment (C5)
*To recognize waste and his components as raw material and resources and to get the know how for a correct handling (C6)
*To know the different mechanical and chemical processes, which are applicable in the field of waste management (C6)
ContentThis lecture gives a comprehensive overview of the different waste-types and waste handling possibilities:
*Waste composition as a mirror of the human evolution
*Waste definition (formation, amount, energy content, waste composition)
*Several recycling possibilities and processes
*Thermal waste treatment (electricity/district heat as products), including off-gas cleaning and incineration residue handling with regards to the final residue storage in a landfill and the problems which have to be solved there
*Special fields like biological waste handling (composting, fermentation), handling of special wastes and municipal sewage sludge treatment
*Economical aspects
Lecture notesMartin F. Lemann: Waste Management
2nd enhanced English Edition 2008, 450 pages
Publisher: Peter Lang AG, Bern
ISBN 978-3-03911-514-3
Literaturesee bibliographie in the script
Prerequisites / Noticebasic of chemical processes has to be known
102-0455-AALGroundwater I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RJ. Jimenez-Martinez, M. Willmann
AbstractThe course provides a quantitative introduction to groundwater flow and contaminant transport.
ObjectiveUnderstanding of the basic concepts on groundwater flow and contaminant transport processes. Formulation and solving of practical problems.
ContentProperties of porous and fractured media, Darcy’s law, flow equation, stream functions, interpretation of pumping tests, transport processes, transport equation, analytical solutions for transport, numerical methods: finite differences method, aquifers remediation, case studies.
LiteratureJ. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979
K. de Ridder, Untersuchung und Anwendung von Pumpversuchen, Verl. R. Müller, Köln, 1970
P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990
R.A. Freeze, J.A. Cherry, Groundwater, Prentice-Hall, New Jersey, 1979
W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995
102-0635-AALAir Pollution Control
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RJ. Wang, B. Buchmann
AbstractThe lecture provides an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and the impact on air quality. Theoretical description and modeling of these processes, air quality measurement techniques and pollution control techniques are covered.
ObjectiveThe students gain general knowledge of the factors resulting in air pollution and the techniques used for air pollution control. The students can identify major air pollution sources and understand the methods for measurement, data collection and analysis. The students can evaluate possible control methods and equipment, design a control system and estimate the efficiency and cost.
Content- the physical and chemical processes leading to emission of pollutants
- air quality analysis
- the meteorological parameters influencing air pollution dispersion
- deterministic and stochastic models, describing the air pollution dispersion
- measurement concepts to observe ambient air pollution
- removal of gaseous pollutants by absorption and adsorption
- control of NOx and Sox
- fundamentals of particulate control
- design and application of wet scrubbers
LiteratureText book
Air Pollution Control Technology Handbook, Karl B. Schnelle, Jr. and Charles A. Brown, CRC Press LLC, 2001.
Prerequisites / NoticeCollege lectures on basic physics, chemistry and mathematics.
252-0846-AALComputer Science II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RF. Friedrich Wicker, H. Lehner
AbstractTogether with the introductory course Informatics I this course provides the foundations of programming and databases. This course particularly covers algorithms and data structures and basics about design and implementation of databases. Programming language used in this course is Java.
ObjectiveBasing on the knowledge covered by lecture Informatics I, the primary educational objectives of this course are
- constructive knowledge of data structures and algorithms amd
- the knowledge of relational databases and
When successfully attended the course, students have a good command of the mechanisms to construct an object oriented program. They know the typically used control and data structures and understand how an algorithmic problem is mapped to a sufficiently efficient computer program. They have an idea of what happens "behind the secenes" when a program is translated and executed. The know how to write database queries and how to design simple databases.
Secondary goals are an algorithmic computational thinking, undestanding the possibilities and limits of programming and to impart the way of thinking of a computer scientist.
ContentWe discuss the paradigm of object oriented programming, typical data structures and algorithms and design principles for the design and usage of relational databases.
More generally, formal thinking and the need for abstraction and importance of appropriate modelling capabilities will be motivated. The course emphasizes applied computer science. Concrete topics are complexity of algorithms, divide and conquer-principles, recursion, sort- and search-algorithms, backtracking, data structures (lists, stacks, queues, trees) and data management in relational data bases.
Lecture notesThe slides will be available for download on the course home page.
LiteratureRobert Sedgewick, Kevin Wayne, Introduction to Programming in Java: An Interdisciplinary Approach, Addison-Wesley, 2008

T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms , 3rd ed., MIT Press, 2009
Prerequisites / NoticePrerequisites are knowledge and programming experience according to course 252-0845-00 Computer Science I (D-BAUG).
529-2001-AALChemistry I and II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

All other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-9 credits19RJ. Cvengros
AbstractGeneral Chemistry I and II: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium, kinetics, acids and bases, electrochemistry
ObjectiveIntroduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.
Content1. Stoichiometry

2. Atoms and Elements (Quantum Mechanical Model of the Atom)

3. Chemical Bonding

4. Thermodynamics

5. Chemical Kinetics

6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria)

7. Electrochemistry
Lecture notesNivaldo J. Tro
Chemistry - A molecular Approach (Pearson), Chapter 1 - 18
LiteratureC. E. Housecroft, E. C. Constable, 'Chemistry'.
529-2002-AALChemistry II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

All other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-5 credits11RJ. Cvengros, H. Grützmacher
AbstractChemistry II: Redox reactions, chemistry of the elements, introduction to organic chemistry
ObjectiveGeneral base for understanding of inorganic and organic chemistry.
Content1. Redoxreactions

2. Inorganic Chemistry
Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronoc structure of the elements.

3. Introduction to organic chemistry
Description of the most important classes of compounds and of the functional groups. Principal reactivity of these functional groups.
Stereochemistry.
Rection mechanisms: SN1- and SN2-reactions, electrophilic aromatic subtitutions, eliminations (E1 and E2), addition reactions (C=C and C=O double bonds). Chemistry of carbony and carboxyl groups.
Lecture notesC.E.Housecroft, E.C.Constable, Chemistry, 4rd Edition, Pearson, Harlow (England), 2010 (ISBN 0-131-27567-4), Chap. 18-33
LiteratureTh.L.Brown, H.E.LeMay, B.E.Bursten; Chemie, 10. Auflage, Pearson Studium, München, 2007 (ISBN 3-8273-7191-0)

C.E.Housecroft, E.C.Constable, Chemistry, 3rd Edition, Pearson, Harlow (England), 2010 (ISBN 0-131-27567-4)

D.W.Oxtoby, H.P.Gillis, N.H.Nachtrieb, Principles of Modern Chemistry, Fifth Edition, Thomson, London, 2002 (ISBN 0-03-035373-4)
752-0100-AALBiochemistry
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-2 credits4RC. Frei
AbstractBasic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo. Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.
ObjectiveIn this self-study course, the students will gain solid biochemical knowledge about enzymology, membrane biochemistry, and central metabolism.
ContentProgram

Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Carbohydrates, structure of DNA
Lipids an biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism
Lecture notesHorton et al. (Pearson) serves as lecture notes.
LiteratureHorton, Moran, Scrimgeour, Perry, Rawn: Principles of Biochemistry, 4th ed. or
Moran, Horton, Scrimgeour, Perry: Principles of Biochemistry, 5th ed.
Pearson Education Limited, Essex
Prerequisites / NoticeBasic knowledge in biology and chemistry is a precondition.
752-4001-AALMicrobiology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-2 credits4RM. Ackermann
AbstractTeaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.
ObjectiveVermittlung der Grundlagen im Fach Mikrobiologie.
ContentDer Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.
Lecture notesWird von den jeweiligen Dozenten ausgegeben.
LiteratureDie Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms
406-0023-AALPhysics Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-7 credits15RL. Degiorgi
AbstractBasic topics in classical as well as modern physics, interplay between basic research and applications.
ObjectiveThis is a self-learning unit and the goal is to acquire basic concepts in classical and moderately even in modern physics.
ContentElectrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity
LiteratureP.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York

Hans J. Paus, Physik in Experimenten und Beispielen, Carl Hanser Verlag München Wien (als unterrichtsbegleitendes und ergänzendes Lehrbuch)
406-0603-AALStochastics (Probability and Statistics)
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RM. Kalisch
AbstractIntroduction to basic methods and fundamental concepts of statistics and
probability theory for non-mathematicians. The concepts are presented on
the basis of some descriptive examples. The course will be based on the
book "Statistics for research" by S. Dowdy et.al. and on the
book "Introductory Statistics with R" by P. Dalgaard.
ObjectiveThe objective of this course is to build a solid fundament in probability
and statistics. The student should understand some fundamental concepts and
be able to apply these concepts to applications in the real
world. Furthermore, the student should have a basic knowledge of the
statistical programming language "R". The main topics of the course are:
- Introduction to probability
- Common distributions
- Binomialtest
- z-Test, t-Test
- Regression
ContentFrom "Statistics for research":
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables [Regression]

From "Introductory Statistics with R":
Ch 1: Basics
Ch 2: Probability and distributions
Ch 3: Descriptive statistics and tables
Ch 4: One- and two-sample tests
Ch 5: Regression and correlation
Literature"Statistics for research" by S. Dowdy et. al. (3rd
edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI:
10.1002/0471477435;
From within the ETH, this book is freely available online under:
Link

"Introductory Statistics with R" by Peter Dalgaard; ISBN
978-0-387-79053-4; DOI: 10.1007/978-0-387-79054-1
From within the ETH, this book is freely available online under:
Link
406-0141-AALLinear Algebra
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-5 credits11RM. Akka Ginosar
AbstractIntroduction to Linear Algebra and Numerical Analysis for Engineers. The contents of the course are covered in the book "Introduction to Linear Algebra" by Gilbert Strang (SIAM, 2003). MATLAB is used as a tool to formulate and implement numerical algorithms.
ObjectiveTo acquire basic knowledge of Linear Algebra and of a few fundamental numerical techniques. The course is meant to
hone analytic and algorithmic skills.
Content1. Vectors and vector spaces
2. Solving linear systems of equations (Gaussian elimination)
3. Orthogonality
4. Determinants
5. Eigenvalues and eigenvectors
6. Linear transformations
7. Numerical linear algebra in MATLAB
8. (Piecewise) polynomial interpolation
9. Splines
LiteratureG. Strang, "Introduction to linear algebra", Third edition, 2003,
ISBN 0-9614088-9-8, Link

T. Sauer. "Numerical analysis", Addison-Wesley 2006
406-0242-AALAnalysis II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-7 credits15RM. Akveld
AbstractMathematical tools of an engineer
ObjectiveMathematics as a tool to solve engineering problems, mathematical formulation of problems in science and engineering. Basic mathematical knowledge of an engineer
ContentMulti variable calculus: gradient, directional derivative, chain rule, Taylor expansion. Multiple integrals: coordinate transformations, path integrals, integrals over surfaces, divergence theorem, applications in physics.
Literature- James Stewart: Multivariable Calculus, Thomson Brooks/Cole
- William L. Briggs / Lyle Cochran: Calculus: Early Transcendentals: International Edition, Pearson Education (Chapters 10 - 14)
406-0243-AALAnalysis I and II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-14 credits30RM. Akveld
AbstractMathematical tools for the engineer
ObjectiveMathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems. Basic mathematical knowledge for engineers.
ContentShort introduction to mathematical logic.
Complex numbers.
Calculus for functions of one variable with applications.
Simple types of ordinary differential equations.
Simple Mathematical models in engineering.

Multi variable calculus: gradient, directional derivative, chain rule, Taylor expansion. Multiple integrals: coordinate transformations, path integrals, integrals over surfaces, divergence theorem, applications in physics.
LiteratureTextbooks in English:
- J. Stewart: Calculus, Cengage Learning, 2009, ISBN 978-0-538-73365-6
- J. Stewart: Multivariable Calculus, Thomson Brooks/Cole (e.g. Appendix G on complex numbers)
- V. I. Smirnov: A course of higher mathematics. Vol. II. Advanced calculus
- W. L. Briggs, L. Cochran: Calculus: Early Transcendentals: International Edition, Pearson Education
Textbooks in German:
- M. Akveld, R. Sperb: Analysis I, vdf
- M. Akveld, R. Sperb: Analysis II, vdf
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- L. Papula: Mathematik für Ingenieure 2, Vieweg Verlag
  •  Page  1  of  1