Search result: Catalogue data in Spring Semester 2020

Doctoral Department of Mathematics Information
More Information at: Link

The list of courses (together with the allocated credit points) eligible for doctoral students is published each semester in the newsletter of the ZGSM.
Link
WARNING: Do not mistake ECTS credits for credit points for doctoral studies!
Graduate School
Official website of the Zurich Graduate School in Mathematics:
Link
NumberTitleTypeECTSHoursLecturers
401-5004-20LLimit Shape Phenomenon in Integrable Models in Statistical MechanicsW0 credits2VN. Reshetikhin
AbstractNachdiplom lecture
Objective
ContentThe limit shape phenomenon for large lattice domains is the formation of the
most probable state, such that all states that macroscopically differ from it are
exponentially improbable. This is a rather general phenomenon of similar nature
to the central limit theorems and to the large deviation principle in probability
theory.
Integrable models in statistical mechanics in many cases admit rather explicit
solutions. This not a definition of integrability, but one of the important conse-
quences. This allows us to describe many features of the limit shape phenome-
non quite explicitly and to prove some important facts about them.
The course will consist roughly of three parts: one is on limit shapes, the other is
on integrability and the third one is about limit shapes in integrable models. The
course is aimed at both mathematics and physics students.
401-5006-20LRough Analysis and ApplicationsW0 credits2VP. Friz
AbstractNachdiplom lecture
Objective
ContentWe plan to discuss: the algebra of iterated integrals, signatures and expec-
ted signatures, rough paths and models; Kolmogorov type criteria; Schau-
der estimates; p-​variation, abstract Riemann-​Stieltjes integration (Sewing);
rough integration and reconstruction; a paracontrolled view; rough differenti-
al equations and flows; rough transport equations; second order rough partial
differential equations; rough volatility; a regularity structure view; large devi-
ations and precise asymptotics for rough volatility.
A good part of the lecture will follow F-​Hairer (2014,2020).
401-5002-20LThe Value Distribution of L-Functions and Multiplicative Number Theory (CANCELLED)W0 creditsK. Soundararajan
AbstractNachdiplom lecture
Objective
ContentThe broad theme for the lecture series is the value distribution of zeta and L-​func-
tions. This is related to several important questions concerning (i) the maximal
size of L-​functions, (ii) asymptotics for moments of L-​values, (iii) the distributi-
on of zeros, and non-​vanishing of L-​functions at special points. Further, some
of the techniques used in the study of moments have close counterparts in the
understanding of other problems in multiplicative number theory --- for instance,
the recent results of Harper on random multiplicative functions, and the break-
throughs of Matomäki and Radziwiłł on multiplicative functions in short intervals.
Much of this work has a strong probabilistic flavor, and in particular we shall dis-
cuss connections with random matrix theory, branching Brownian motion, etc.
401-3109-65LProbabilistic Number Theory Information
Does not take place this semester.
W8 credits4GE. Kowalski
AbstractThe course presents some results of probabilistic number theory in a unified manner, including distribution properties of the number of prime divisors of integers, probabilistic properties of the zeta function and statistical distribution of exponential sums.
ObjectiveThe goal of the course is to present some results of probabilistic number theory in a unified manner.
ContentThe main concepts will be presented in parallel with the proof of a few main theorems:
(1) the Erdős-Wintner and Erdős-Kac theorems concerning the distribution of values of arithmetic functions;
(2) the distribution of values of the Riemann zeta function, including Selberg's central limit theorem for the Riemann zeta function on the critical line;
(3) the Chebychev bias for primes in arithmetic progressions;
(4) functional limit theorems for the paths of partial sums of families of exponential sums.
Lecture notesThe lecture notes for the class are available at

Link
Prerequisites / NoticePrerequisites: Complex analysis, measure and integral; some probability theory is useful but the main concepts needed will be recalled.
Some knowledge of number theory is useful but the main results will be summarized.
401-3002-12LAlgebraic Topology II Information W8 credits4GA. Sisto
AbstractThis is a continuation course to Algebraic Topology I. The course will cover more advanced topics in algebraic topology including:
cohomology of spaces, operations in homology and cohomology, duality.
Objective
Literature1) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

The book can be downloaded for free at:
Link

2) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.

3) E. Spanier, "Algebraic topology", Springer-Verlag
Prerequisites / NoticeGeneral topology, linear algebra, singular homology of topological spaces (e.g. as taught in "Algebraic topology I").

Some knowledge of differential geometry and differential topology
is useful but not absolutely necessary.
401-3226-00LSymmetric Spaces Information W8 credits4GM. Burger
Abstract* Generalities on symmetric spaces: locally and globally symmetric spaces, groups of isometries, examples
* Symmetric spaces of non-compact type: flats and rank, roots and root spaces
* Iwasawa decomposition, Weyl group, Cartan decomposition
* Hints of the geometry at infinity of SL(n,R)/SO(n).
ObjectiveLearn the basics of symmetric spaces
401-3532-08LDifferential Geometry II Information W10 credits4V + 1UU. Lang
AbstractIntroduction to Riemannian geometry in combination with some elements of modern metric geometry. Contents: Riemannian manifolds, Levi-Civita connection, geodesics, Hopf-Rinow Theorem, curvature, second fundamental form, Riemannian submersions and coverings, Hadamard-Cartan Theorem, triangle and volume comparison, relations between curvature and topology, spaces of Riemannian manifolds.
ObjectiveLearn the basics of Riemannian geometry and some elements of modern metric geometry.
Literature- M. P. do Carmo, Riemannian Geometry, Birkhäuser 1992
- S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer 2004
- B. O'Neill, Semi-Riemannian Geometry, With Applications to Relativity, Academic Press 1983
Prerequisites / NoticePrerequisite is a working knowledge of elementary differential geometry (curves and surfaces in Euclidean space), differentiable manifolds, and differential forms.
401-3462-00LFunctional Analysis II Information W10 credits4V + 1UM. Struwe
AbstractSobolev spaces, weak solutions of elliptic boundary value problems, elliptic regularity
ObjectiveAcquiring the methods for solving elliptic boundary value problems, Sobolev spaces, Schauder estimates
Lecture notesFunktionalanalysis II, Michael Struwe
LiteratureFunktionalanalysis II, Michael Struwe

Functional Analysis, Spectral Theory and Applications.
Manfred Einsiedler and Thomas Ward, GTM Springer 2017
Prerequisites / NoticeFunctional Analysis I and a solid background in measure theory, Lebesgue integration and L^p spaces.
401-4788-16LMathematics of (Super-Resolution) Biomedical Imaging
NOTICE: The exercise class scheduled for 5 March has been cancelled
W8 credits4GH. Ammari
AbstractThe aim of this course is to review different methods used to address challenging problems in biomedical imaging. The emphasis will be on scale separation techniques, hybrid imaging, spectroscopic techniques, and nanoparticle imaging. These approaches allow one to overcome the ill-posedness character of imaging reconstruction in biomedical applications and to achieve super-resolution imaging.
ObjectiveSuper-resolution imaging is a collective name for a number of emerging techniques that achieve resolution below the conventional resolution limit, defined as the minimum distance that two point-source objects have to be in order to distinguish the two sources from each other.

In this course we describe recent advances in scale separation techniques, spectroscopic approaches, multi-wave imaging, and nanoparticle imaging. The objective is fivefold:
(i) To provide asymptotic expansions for both internal and boundary perturbations that are due to the presence
of small anomalies;
(ii) To apply those asymptotic formulas for the purpose of identifying the material parameters and certain geometric features of the anomalies;
(iii) To design efficient inversion algorithms in multi-wave modalities;
(iv) to develop inversion techniques using multi-frequency measurements;
(v) to develop a mathematical and numerical framework for nanoparticle imaging.

In this course we shall consider both analytical and computational
matters in biomedical imaging. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, inverse problems, mathematical imaging, optimal control, stochastic modelling, and analysis of physical phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in biomedical imaging, requires a deep understanding of the different scales in the physical models, an accurate mathematical modelling of the imaging techniques, and fine analysis of complex physical phenomena.

An emphasis is put on mathematically analyzing acoustic-electric imaging, thermo-elastic imaging, Lorentz force based imaging, elastography, multifrequency electrical impedance tomography, and plasmonic resonant nanoparticles.
401-4605-20LSelected Topics in Probability Information W4 credits2VA.‑S. Sznitman
AbstractThis course will discuss some questions of current interest in probability theory. Among examples of possible subjects are for instance topics in random media, large deviations, random walks on graphs, branching random walks, random trees, percolation, concentration of measures, large random matrices, stochastic calculus, stochastic partial differential equations.
ObjectiveThis course will discuss some questions of current interest in probability theory. Among examples of possible subjects are for instance topics in random media, large deviations, random walks on graphs, branching random walks, random trees, percolation, concentration of measures, large random matrices, stochastic calculus, stochastic partial differential equations.
Prerequisites / NoticeLecture Probability Theory.
401-4632-15LCausality Information W4 credits2GC. Heinze-Deml
AbstractIn statistics, we are used to search for the best predictors of some random variable. In many situations, however, we are interested in predicting a system's behavior under manipulations. For such an analysis, we require knowledge about the underlying causal structure of the system. In this course, we study concepts and theory behind causal inference.
ObjectiveAfter this course, you should be able to
- understand the language and concepts of causal inference
- know the assumptions under which one can infer causal relations from observational and/or interventional data
- describe and apply different methods for causal structure learning
- given data and a causal structure, derive causal effects and predictions of interventional experiments
Prerequisites / NoticePrerequisites: basic knowledge of probability theory and regression
401-4658-00LComputational Methods for Quantitative Finance: PDE Methods Information Restricted registration - show details W6 credits3V + 1UC. Schwab
AbstractIntroduction to principal methods of option pricing. Emphasis on PDE-based methods. Prerequisite MATLAB programming
and knowledge of numerical mathematics at ETH BSc level.
ObjectiveIntroduce the main methods for efficient numerical valuation of derivative contracts in a
Black Scholes as well as in incomplete markets due Levy processes or due to stochastic volatility
models. Develop implementation of pricing methods in MATLAB.
Finite-Difference/ Finite Element based methods for the solution of the pricing integrodifferential equation.
Content1. Review of option pricing. Wiener and Levy price process models. Deterministic, local and stochastic
volatility models.
2. Finite Difference Methods for option pricing. Relation to bi- and multinomial trees.
European contracts.
3. Finite Difference methods for Asian, American and Barrier type contracts.
4. Finite element methods for European and American style contracts.
5. Pricing under local and stochastic volatility in Black-Scholes Markets.
6. Finite Element Methods for option pricing under Levy processes. Treatment of
integrodifferential operators.
7. Stochastic volatility models for Levy processes.
8. Techniques for multidimensional problems. Baskets in a Black-Scholes setting and
stochastic volatility models in Black Scholes and Levy markets.
9. Introduction to sparse grid option pricing techniques.
Lecture notesThere will be english, typed lecture notes as well as MATLAB software for registered participants in the course.
LiteratureR. Cont and P. Tankov : Financial Modelling with Jump Processes, Chapman and Hall Publ. 2004.

Y. Achdou and O. Pironneau : Computational Methods for Option Pricing, SIAM Frontiers in Applied Mathematics, SIAM Publishers, Philadelphia 2005.

D. Lamberton and B. Lapeyre : Introduction to stochastic calculus Applied to Finance (second edition), Chapman & Hall/CRC Financial Mathematics Series, Taylor & Francis Publ. Boca Raton, London, New York 2008.

J.-P. Fouque, G. Papanicolaou and K.-R. Sircar : Derivatives in financial markets with stochastic volatility, Cambridge Univeristy Press, Cambridge, 2000.

N. Hilber, O. Reichmann, Ch. Schwab and Ch. Winter: Computational Methods for Quantitative Finance, Springer Finance, Springer, 2013.
401-3629-00LQuantitative Risk Management Information W4 credits2V + 1UP. Cheridito
AbstractThis course introduces methods from probability theory and statistics that can be used to model financial risks. Topics addressed include loss distributions, risk measures, extreme value theory, multivariate models, copulas, dependence structures and operational risk.
ObjectiveThe goal is to learn the most important methods from probability theory and statistics used in financial risk modeling.
Content1. Introduction
2. Basic Concepts in Risk Management
3. Empirical Properties of Financial Data
4. Financial Time Series
5. Extreme Value Theory
6. Multivariate Models
7. Copulas and Dependence
8. Operational Risk
Lecture notesCourse material is available on Link
LiteratureQuantitative Risk Management: Concepts, Techniques and Tools
AJ McNeil, R Frey and P Embrechts
Princeton University Press, Princeton, 2015 (Revised Edition)
Link
Prerequisites / NoticeThe course corresponds to the Risk Management requirement for the SAA ("Aktuar SAV Ausbildung") as well as for the Master of Science UZH-ETH in Quantitative Finance.
401-3917-00LStochastic Loss Reserving MethodsW4 credits2VR. Dahms
AbstractLoss Reserving is one of the central topics in non-life insurance. Mathematicians and actuaries need to estimate adequate reserves for liabilities caused by claims. These claims reserves have influence all financial statements, future premiums and solvency margins. We present the stochastics behind various methods that are used in practice to calculate those loss reserves.
ObjectiveOur goal is to present the stochastics behind various methods that are used in prctice to estimate claim reserves. These methods enable us to set adequate reserves for liabilities caused by claims and to determine prediction errors of these predictions.
ContentWe will present the following stochastic claims reserving methods/models:
- Stochastic Chain-Ladder Method
- Bayesian Methods, Bornhuetter-Ferguson Method, Credibility Methods
- Distributional Models
- Linear Stochastic Reserving Models, with and without inflation
- Bootstrap Methods
- Claims Development Result (solvency view)
- Coupling of portfolios
LiteratureM. V. Wüthrich, M. Merz, Stochastic Claims Reserving Methods in Insurance, Wiley 2008.
Prerequisites / NoticeThe exams ONLY take place during the official ETH examination periods.

This course will be held in English and counts towards the diploma "Aktuar SAV".
For the latter, see details under Link.

Basic knowledge in probability theory is assumed, in particular conditional expectations.
401-3936-00LData Analytics for Non-Life Insurance PricingW4 credits2VC. M. Buser, M. V. Wüthrich
AbstractWe study statistical methods in supervised learning for non-life insurance pricing such as generalized linear models, generalized additive models, Bayesian models, neural networks, classification and regression trees, random forests and gradient boosting machines.
ObjectiveThe student is familiar with classical actuarial pricing methods as well as with modern machine learning methods for insurance pricing and prediction.
ContentWe present the following chapters:
- generalized linear models (GLMs)
- generalized additive models (GAMs)
- neural networks
- credibility theory
- classification and regression trees (CARTs)
- bagging, random forests and boosting
Lecture notesThe lecture notes are available from:
Link
Prerequisites / NoticeThis course will be held in English and counts towards the diploma of "Aktuar SAV".
For the latter, see details under Link

Good knowledge in probability theory, stochastic processes and statistics is assumed.
401-4920-00LMarket-Consistent Actuarial ValuationW4 credits2VM. V. Wüthrich, H. Furrer
AbstractIntroduction to market-consistent actuarial valuation.
Topics: Stochastic discounting, full balance sheet approach, valuation portfolio in life and non-life insurance, technical and financial risks, risk management for insurance companies.
ObjectiveGoal is to give the basic mathematical tools for describing insurance products within a financial market and economic environment and provide the basics of solvency considerations.
ContentIn this lecture we give a full balance sheet approach to the task of actuarial valuation of an insurance company. Therefore we introduce a multidimensional valuation portfolio (VaPo) on the liability side of the balance sheet. The basis of this multidimensional VaPo is a set of financial instruments. This approach makes the liability side of the balance sheet directly comparable to its asset side.

The lecture is based on four sections:
1) Stochastic discounting
2) Construction of a multidimensional Valuation Portfolio for life insurance products (with guarantees)
3) Construction of a multidimensional Valuation Portfolio for a run-off portfolio of a non-life insurance company
4) Measuring financial risks in a full balance sheet approach (ALM risks)
LiteratureMarket-Consistent Actuarial Valuation, 3rd edition.
Wüthrich, M.V.
EAA Series, Springer 2016.
ISBN: 978-3-319-46635-4

Wüthrich, M.V., Merz, M.
Claims run-off uncertainty: the full picture.
SSRN Manuscript ID 2524352 (2015).

England, P.D, Verrall, R.J., Wüthrich, M.V.
On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins.
Insurance: Mathematics and Economics 85 (2019), 74-88.

Wüthrich, M.V., Embrechts, P., Tsanakas, A.
Risk margin for a non-life insurance run-off.
Statistics & Risk Modeling 28 (2011), no. 4, 299--317.

Financial Modeling, Actuarial Valuation and Solvency in Insurance.
Wüthrich, M.V., Merz, M.
Springer Finance 2013.
ISBN: 978-3-642-31391-2

Cheridito, P., Ery, J., Wüthrich, M.V.
Assessing asset-liability risk with neural networks.
Risks 8/1 (2020), article 16.
Prerequisites / NoticeThe exams ONLY take place during the official ETH examination period.

This course will be held in English and counts towards the diploma of "Aktuar SAV".
For the latter, see details under Link.

Knowledge in probability theory, stochastic processes and statistics is assumed.
401-3956-00LEconomic Theory of Financial Markets
Does not take place this semester.
W4 credits2VM. V. Wüthrich
AbstractThis lecture provides an introduction to the economic theory of financial markets. It presents the basic financial and economic concepts to insurance mathematicians and actuaries.
ObjectiveThis lecture aims at providing the fundamental financial and economic concepts to insurance mathematicians and actuaries. It focuses on portfolio theory, cash flow valuation and deflator techniques.
ContentWe treat the following topics:
- Fundamental concepts in economics
- Portfolio theory
- Mean variance analysis, capital asset pricing model
- Arbitrage pricing theory
- Cash flow theory
- Valuation principles
- Stochastic discounting, deflator techniques
- Interest rate modeling
- Utility theory
Prerequisites / NoticeThe exams ONLY take place during the official ETH examination period.

This course will be held in English and counts towards the diploma of "Aktuar SAV". For the latter, see details under Link.

Knowledge in probability theory, stochastic processes and statistics is assumed.
151-0530-00LNonlinear Dynamics and Chaos IIW4 credits4GG. Haller
AbstractThe internal structure of chaos; Hamiltonian dynamical systems; Normally hyperbolic invariant manifolds; Geometric singular perturbation theory; Finite-time dynamical systems
ObjectiveThe course introduces the student to advanced, comtemporary concepts of nonlinear dynamical systems analysis.
ContentI. The internal structure of chaos: symbolic dynamics, Bernoulli shift map, sub-shifts of finite type; chaos is numerical iterations.

II.Hamiltonian dynamical systems: conservation and recurrence, stability of fixed points, integrable systems, invariant tori, Liouville-Arnold-Jost Theorem, KAM theory.

III. Normally hyperbolic invariant manifolds: Crash course on differentiable manifolds, existence, persistence, and smoothness, applications.
IV. Geometric singular perturbation theory: slow manifolds and their stability, physical examples. V. Finite-time dynamical system; detecting Invariant manifolds and coherent structures in finite-time flows
Lecture notesStudents have to prepare their own lecture notes
LiteratureBooks will be recommended in class
Prerequisites / NoticeNonlinear Dynamics I (151-0532-00) or equivalent
401-3652-00LNumerical Methods for Hyperbolic Partial Differential Equations (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: MAT827

Mind the enrolment deadlines at UZH:
Link
W10 credits4V + 2UUniversity lecturers
AbstractThis course treats numerical methods for hyperbolic initial-boundary value problems, ranging from wave equations to the equations of gas dynamics. The principal methods discussed in the course are finite volume methods, including TVD, ENO and WENO schemes. Exercises involve implementation of numerical methods in MATLAB.
ObjectiveThe goal of this course is familiarity with the fundamental ideas and mathematical
consideration underlying modern numerical methods for conservation laws and wave equations.
Content* Introduction to hyperbolic problems: Conservation, flux modeling, examples and significance in physics and engineering.

* Linear Advection equations in one dimension: Characteristics, energy estimates, upwind schemes.

* Scalar conservation laws: shocks, rarefactions, solutions of the Riemann problem, weak and entropy solutions, some existence and uniqueness results, finite volume schemes of the Godunov, Engquist-Osher and Lax-Friedrichs type. Convergence for monotone methods and E-schemes.

* Second-order schemes: Lax-Wendroff, TVD schemes, limiters, strong stability preserving Runge-Kutta methods.

* Linear systems: explicit solutions, energy estimates, first- and high-order finite volume schemes.

* Non-linear Systems: Hugoniot Locus and integral curves, explicit Riemann solutions of shallow-water and Euler equations. Review of available theory.
Lecture notesLecture slides will be made available to participants. However, additional material might be covered in the course.
LiteratureH. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer 2011. Available online.

R. J. LeVeque, Finite Volume methods for hyperbolic problems, Cambridge university Press, 2002. Available online.

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, Ellipses, Paris, 1991.
Prerequisites / NoticeHaving attended the course on the numerical treatment of elliptic and parabolic problems is no prerequisite.

Programming exercises in MATLAB

Former course title: "Numerical Solution of Hyperbolic Partial Differential Equations"
401-3903-11LGeometric Integer ProgrammingW6 credits2V + 1UJ. Paat
AbstractInteger programming is the task of minimizing a linear function over all the integer points in a polyhedron. This lecture introduces the key concepts of an algorithmic theory for solving such problems.
ObjectiveThe purpose of the lecture is to provide a geometric treatment of the theory of integer optimization.
ContentKey topics are:

- Lattice theory and the polynomial time solvability of integer optimization problems in fixed dimension.

- Structural properties of integer sets that reveal other parameters affecting the complexity of integer problems

- Duality theory for integer optimization problems from the vantage point of lattice free sets.
Lecture notesnot available, blackboard presentation
LiteratureLecture notes will be provided.

Other helpful materials include

Bertsimas, Weismantel: Optimization over Integers, 2005

and

Schrijver: Theory of linear and integer programming, 1986.
Prerequisites / Notice"Mathematical Optimization" (401-3901-00L)
  •  Page  1  of  2 Next page Last page     All