Suchergebnis: Katalogdaten im Frühjahrssemester 2020
Elektrotechnik und Informationstechnologie Master | ||||||
Master-Studium (Studienreglement 2018) | ||||||
Electronics and Photonics The core courses and specialization courses below are a selection for students who wish to specialize in the area of "Electronics and Photonics", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html. The individual study plan is subject to the tutor's approval. | ||||||
Kernfächer These core courses are particularly recommended for the field of "Electronics and Photonics". You may choose core courses form other fields in agreement with your tutor. A minimum of 24 credits must be obtained from core courses during the MSc EEIT. | ||||||
Foundation Core Courses | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0111-00L | Communication Electronics | W | 6 KP | 2V + 2U | Q. Huang | |
Kurzbeschreibung | Electronics for communications systems, with emphasis on realization. Low noise amplifiers, modulators and demodulators, transmit amplifiers and oscillators are discussed in the context of wireless communications. Wireless receiver, transmitter and frequency synthesizer will be described. Importance of and trade offs among sensitivity, linearity and selectivity are discussed extensively. | |||||
Lernziel | Foundation course for understanding modern electronic circuits for communication applications. We learn how theoretical communications principles are reduced to practice using transistors, switches, inductors, capacitors and resistors. The harsh environment such communication electronics will be exposed to and the resulting requirements on the sensitivity, linearity and selectivity help explain the design trade offs encountered in every circuit block found in a modern transceiver. | |||||
Inhalt | Accounting for more than two trillion dollars per year, communications is one of the most important drivers for advanced economies of our time. Wired networks have been a key enabler to the internet age and the proliferation of search engines, social networks and electronic commerce, whereas wireless communications, cellular networks in particular, have liberated people and increased productivity in developed and developing nations alike. Integrated circuits that make such communications devices light weight and affordable have played a key role in the proliferation of communications. This course introduces our students to the key components that realize the tangible products in electronic form. We begin with an introduction to wireless communications, and describe the harsh environment in which a transceiver has to work reliably. In this context we highlight the importance of sensitivity or low noise, linearity, selectivity, power consumption and cost, that are all vital to a competitive device in such applications. We shall review bipolar and MOS devices from a designer's prospectives, before discussing basic amplifier structures - common emitter/source, common base/gate configurations, their noise performance and linearity, impedance matching, and many other things one needs to know about a low noise amplifier. We will discuss modulation, and the mixer that enables its implementation. Noise and linearity form an inseparable part of the discussion of its design, but we also introduce the concept of quadrature demodulator, image rejection, and the effects of mismatch on performance. When mixers are used as a modulator the signals they receive are usually large and the natural linearity of transistors becomes insufficient. The concept of feedback will be introduced and its function as an improver of linearity studied in detail. Amplifiers in the transmit path are necessary to boost the power level before the signal leaves an integrated circuit to drive an even more powerful amplifier (PA) off chip. Linearized pre-amplifiers will be studied as part of the transmitter. A crucial part of a mobile transceiver terminal is the generation of local oscillator signals at the desired frequencies that are required for modulation and demodulation. Oscillators will be studied, starting from stability criteria of an electronic system, then leading to criteria for controlled instability or oscillation. Oscillator design will be discussed in detail, including that of crystal controlled oscillators which provide accurate time base. An introduction to phase-locked loops will be made, illustrating how it links a variable frequency oscillator to a very stable fixed frequency crystal oscillator, and how phase detector, charge pump and programmable dividers all serve to realize an agile frequency synthesizer that is very stable in each frequency synthesized. | |||||
Skript | Script is available online under https://iis-students.ee.ethz.ch/lectures/communication-electronics/ | |||||
Voraussetzungen / Besonderes | The course Analog Integrated Circuits is recommended as preparation for this course. | |||||
227-0147-00L | VLSI II: Design of Very Large Scale Integration Circuits | W | 6 KP | 5G | F. K. Gürkaynak, L. Benini | |
Kurzbeschreibung | This second course in our VLSI series is concerned with how to turn digital circuit netlists into safe, testable and manufacturable mask layout, taking into account various parasitic effects. Low-power circuit design is another important topic. Economic aspects and management issues of VLSI projects round off the course. | |||||
Lernziel | Know how to design digital VLSI circuits that are safe, testable, durable, and make economic sense. | |||||
Inhalt | The second course begins with a thorough discussion of various technical aspects at the circuit and layout level before moving on to economic issues of VLSI. Topics include: - The difficulties of finding fabrication defects in large VLSI chips. - How to make integrated circuit testable (design for test). - Synchronous clocking disciplines compared, clock skew, clock distribution, input/output timing. - Synchronization and metastability. - CMOS transistor-level circuits of gates, flip-flops and random access memories. - Sinks of energy in CMOS circuits. - Power estimation and low-power design. - Current research in low-energy computing. - Layout parasitics, interconnect delay, static timing analysis. - Switching currents, ground bounce, IR-drop, power distribution. - Floorplanning, chip assembly, packaging. - Layout design at the mask level, physical design verification. - Electromigration, electrostatic discharge, and latch-up. - Models of industrial cooperation in microelectronics. - The caveats of virtual components. - The cost structures of ASIC development and manufacturing. - Market requirements, decision criteria, and case studies. - Yield models. - Avenues to low-volume fabrication. - Marketing considerations and case studies. - Management of VLSI projects. Exercises are concerned with back-end design (floorplanning, placement, routing, clock and power distribution, layout verification). Industrial CAD tools are being used. | |||||
Skript | H. Kaeslin: "Top-Down Digital VLSI Design, from Gate-Level Circuits to CMOS Fabrication", Lecture Notes Vol.2 , 2015. All written documents in English. | |||||
Literatur | H. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303. | |||||
Voraussetzungen / Besonderes | Highlight: Students are offered the opportunity to design a circuit of their own which then gets actually fabricated as a microchip! Students who elect to participate in this program register for a term project at the Integrated Systems Laboratory in parallel to attending the VLSI II course. Prerequisites: "VLSI I: from Architectures to Very Large Scale Integration Circuits and FPGAs" or equivalent knowledge. Further details: https://vlsi2.ethz.ch | |||||
227-0125-00L | Optics and Photonics | W | 6 KP | 2V + 2U | J. Leuthold | |
Kurzbeschreibung | This lecture covers both - the fundamentals of "Optics" such as e.g. "ray optics", "coherence", the "Planck law" or the "Einstein relations" but also the fundamentals of "Photonics" on the generation, processing, transmission and detection of photons. | |||||
Lernziel | A sound base for work in the field of optics and photonics will be given. | |||||
Inhalt | Chapter 1: Ray Optics Chapter 2: Electromagnetic Optics Chapter 3: Polarization Chapter 4: Coherence and Interference Chapter 5: Fourier Optics and Diffraction Chapter 6: Guided Wave Optics Chapter 7: Optical Fibers Chapter 8: The Laser | |||||
Skript | Lecture notes will be handed out. | |||||
Voraussetzungen / Besonderes | Fundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics. |
- Seite 1 von 1