Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Chemie- und Bioingenieurwissenschaften Master Information
Master-Studium (Studienreglement 2018)
Wahlfächer
Produkte und Materialien
NummerTitelTypECTSUmfangDozierende
529-0610-01LInterface Engineering of MaterialsW6 KP4GC.‑J. Shih
KurzbeschreibungAdvances in interface engineering, the control of molecular and charge behaviour between two phases, are driving the development of new technologies across many industrial and scientific fields. This course will review the fundamental engineering concepts required to analyse and solve problems at liquid-solid and solid-solid interfaces.
LernzielIntroduce the students to the engineering principles of energy, mass, and electron transport at the liquid-solid and solid-solid interfaces, for the applications in materials processing and electronic devices.
InhaltPART A: Solid-Liquid Interface
Chapter 1: Interface Phenomena
Chapter 2: Crystallization and Crystal Growth
Chapter 3: Electrical Double Layer
Chapter 4: Electroosmotic Flow
PART B: Solid-Solid Interface
Chapter 5: Fundamentals of Electronic Materials
Chapter 6: Junction Characteristics
Chapter 7: Solar Cells and Light Emitting Diodes
Chapter 8: Field-Effect Transistors
LiteraturHiemenz P.C., Rajagopalan R., Principles of Colloid and Surface Chemistry, 3rd Edition.
Deen W.M., Analysis of Transport Phenomena, 2nd Edition.
Sze S.M. and Ng K.K., Physics of Semiconductor Devices, 3rd Edition.
Voraussetzungen / BesonderesEngineering Mathematics, Transport Phenomena, Undergraduate Physical Chemistry
529-0135-00LCook and Look: Watching Functional Materials in SituW3 KP3GM. Nachtegaal, D. Ferri, O. Safonova, T. Schmidt
KurzbeschreibungHands-on course on in situ spectroscopies (x-ray, infrared, Raman) and x-ray diffraction for understanding the structure of functional materials.
LernzielThorough understanding of available state-of-the-art spectroscopies for the characterization of the structure of functional materials under in situ conditions.
Problem solving strategies and reporting in a scientific format.
To learn the basics of spectroscopic data analysis.
InhaltThis course will introduce state-of-the art synchrotron techniques (x-ray absorption and emission spectroscopies, x-ray diffraction) as well as complementary infrared and Raman spectroscopies for the characterization of functional materials, such as catalysts, under operating (in situ) conditions. On the ‘cook’ days, each technique will be introduced by a lecture, after which samples will be ‘cooked’ (sample preparation, building in situ setup, and measurement). This will be followed by a ‘look’ day where the collected data will be analyzed. Principles of x-ray data treatment, including Fourier transformation, will be introduced.
SkriptA course manual with in depth background information will be distributed before the course.
LiteraturWill be suggested in the course manual and made available during the course.
Voraussetzungen / BesonderesThe course will take place at the Swiss Light Source, at the Paul Scherrer Institut. Students will be housed for several nights in the guest house. You are required to contact the organizers upon registration since beamtime and housing has to be reserved well in advance.
  •  Seite  1  von  1