Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Biologie Bachelor Information
3. Studienjahr, 6. Semester
Blockkurse
Anmeldung zu Blockkursen muss zwingend über die website Link
Anmeldung möglich von 16.12.2019 - 06.01.2020

Bitte die ETH Aufnahmekriterien für die Aufnahme von Studierenden der ETH in ETH Blockkurse auf der Blockkurs-Anmeldeseite unter "Zuteilung" beachten.
Blockkurse im 2. Semesterviertel
Von 12.3.2020 bis 2.4.2020
NummerTitelTypECTSUmfangDozierende
376-1346-00LStudy of Epigenetic Mechanisms in Mental Health Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.

The enrolment is done by the D-BIOL study administration.
W6 KP7GI. Mansuy
KurzbeschreibungThis block course is focused on the study of the epigenetic mechanisms that regulate complex brain functions and behavior. It provides an overview of molecular methods used in experimental mice or in human samples to investigate epigenetic processes that control genome activity and gene expression, and are associated with cognitive functions and behavioral responses.
LernzielThe purpose is to learn the principles of major methods in epigenetics that allow examine genome activity at the level of DNA, RNA or protein, in the context of complex brain functions.
Inhalt4 independent projects for 3 students each covering various aspects of epigenetic mechanisms. It will focus on state-of-the-art techniques to measure or manipulate gene expression and gene activity in the adult brain or in cell culture, and analyse the effects in vitro or in vivo using omics analyses, molecular and biochemical tools and behavioral testing.
SkriptProvided at the beginning of the practical.
551-0352-00LIntroduction to Mass Spectrometry-based Proteomics Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.

The enrolment is done by the D-BIOL study administration.
W6 KP7GL. Gillet, P. Picotti
KurzbeschreibungProtein-Analyse durch Massenspektrometrie
Die folgende Thematik wird abgedeckt: Grundlagen der biologischen Massenspektrometrie einschliesslich Instrumentation, Datenaufnahme und -bearbeitung; Anwendung zur Identifizierung und Charakterisierung von Proteinen; Probevorbereitung; Proteomic-Strategien einschliesslich quantitative Analysen.
LernzielProbenvorbereitung fuer die MS Analyse (Trypsin Verdau, C18 Aufreinigung)
Prinzipien LC-MS basierter Datenaquisition (QTOF und/oder Ion Trap Instrumenten)
Qualitative Proteom Analyse (Protein Identifizierung mit Hilfe von Mascot und/oder Sequest Software)
Quantitative Proteom Analyse (unmarkierte und Isotopen markierte Strategien)
Analyse und Auswertung von Datensätzen zur Detektion von hoch- bzw. runter-regulierten Proteinen
551-0434-00LNMR Spectroscopy in Biology Belegung eingeschränkt - Details anzeigen
Number of participants limited to 6.

The enrolment is done by the D-BIOL study administration.
W6 KP7GF. Allain, A. D. Gossert, K. Wüthrich
KurzbeschreibungIn this block course, students actively participate in ongoing research projects in the research groups of Profs. Allain, Wüthrich and Dr. Gossert. The students will be tutored in their experimental work by experienced postdoc students. In addition, the course includes specific lectures that provide the theoretical background for the experimental work, as well as exercises and literature work.
LernzielThe course provides first "hands on" insight into applications of NMR spectroscopy in biological sciences. The course should enable the students to understand the potential and limitations of NMR applied to biological problems.
InhaltThe topics include studies of proteins, RNA and protein-RNA interactions,

Participation in one of the following projects will be possible:
- NMR of RNA
- NMR of several protein-RNA complexes (hnRNPF, nPTB, SR proteins)
- NMR studies of protein-ligand interactions
- dynamics of protein-RNA complexes
- Segmental isotopic labeling to study multidomain proteins
- NMR Methods Development
SkriptNo script
LiteraturLists of individual reading assignments will be handed out.
529-0810-01LOrganische Chemie II (für D-BIOL) Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 12

Bitte melden Sie sich möglichst vor Ablauf der Herbstsemester-Vorlesungszeit bei Prof. C. Thilgen (Link) an. Sie erhalten eine Rückmeldung, ob Sie am Praktikum teilnehmen können.

Die Belegung erfolgt nur über das Studiensekretariat D-BIOL.

Die Lehrsprache hängt de facto von der betreuenden Person ab.
W12 KP4PC. Thilgen
KurzbeschreibungBearbeiten eines organisch-synthetischen Teilprojekts aus der aktuellen Forschung einer Gruppe des Laboratoriums für Organische Chemie unter der Anleitung von Doktorierenden.
LernzielErlernen von Planung und Durchführung anspruchsvoller Mehrstufensynthesen unter Einbezug moderner Methoden; vertieftes Verständnis organisch-chemischer Reaktionen durch Experimente; Entwickeln eines organisch-synthetischen Forschungsprojekts; akkurates Protokollieren, Verfassen eines Berichts im Stil einer Veröffentlichung und Präsentieren der Ergebnisse in Form eines Kurzvortrags.
InhaltBearbeiten eines organisch-synthetischen Teilprojekts aus der aktuellen Forschung einer Gruppe des Laboratoriums für Organische Chemie unter der Anleitung von Doktorierenden.
SkriptKein Skript.
LiteraturKeine Pflichtliteratur. Literatur wird von den betreuenden Doktorierenden angegeben bzw. zur Verfügung gestellt.
Voraussetzungen / BesonderesVoraussetzungen: bestandenes Praktikum Organische Chemie I (529-0229-00); bestandene Sessionsprüfung Organische Chemie I (529-0221-00 bzw. 529-1011-00) / Organische Chemie II (529-0222-00 bzw. 529-1012-00). Die Zahl der Teilnehmenden ist auf 12 beschränkt.
551-1147-00LBioactive Natural Products from Bacteria Belegung eingeschränkt - Details anzeigen
Number of participants limited to 7.

The enrolment is done by the D-BIOL study administration.
W6 KP7GJ. Piel
KurzbeschreibungLab course. In small groups projects of relevance to current research questions in the field of bacterial natural product biosynthesis are addressed.
LernzielIntroduction to relevant subjects of the secondary metabolism of bacteria. Training in practical work in a research laboratory. Scientific writing in form of a research report.
InhaltResearch project on bacteria that produce bioactive natural products (e.g., Streptomycetes, Cyanobacteria, uncultivated bacteria). The techniques used will depend on the project, e.g. PCR, cloning, natural product analysis, precursor feeding studies, enzyme expression and analysis.
Skriptnone.
LiteraturWill be provided for each of the projects at the beginning of the course.
551-1554-00LMultigene Expression in Mammalian Cells Belegung eingeschränkt - Details anzeigen
Number of participants limited to 5.

The enrolment is done by the D-BIOL study administration.
W6 KP7GP. Berger, G. Schertler
KurzbeschreibungGenetic engineering of mammalian cells with multiple expression cassettes is an essential need in contemporary cell biology. It is useful for protein expression for structural studies, the reprogramming of somatic cells, or for the expression of several fluorescently-tagged sensors. In this course, we use MultiLabel (Kriz et al., Nat. Commun., 2010) to create multigene expression plasmids.
LernzielStudents will learn to design and clone multigene expression constructs for mammalian cells. The functionality of the constructs will be tested by immunofluorescence microscopy or Western blotting.
InhaltWe will clone fluorescently-tagged markers for subcellular compartments, assemble them to a multigene expression construct and transfect them into mammalian cells. These markers of subcellular compartments will be used to study the trafficking of activated receptors (e.g. serotonin receptor). Pictures will be taken on our microscopes and then we will quantify colocalization.
Skriptnone
551-0436-00LCryo-electron Microscopic Studies of Ribosomal Complexes with Biomedically Important Viral mRNAs Belegung eingeschränkt - Details anzeigen
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.
W6 KP7GN. Ban, D. Böhringer, M. A. Leibundgut
KurzbeschreibungSome viral mRNAs, such as from Hepatitis C virus, hijack cellular translational machinery by binding directly to the ribosome and circumventing the need for cellular initiation factors. They accomplish this through structured elements within the mRNAs called internal ribosome entry sites (IRESs). Participants of this course will visualize ribosomes in complex with viral IRESs at high resolution.
LernzielThe goal of the course is to acquire the most important techniques and methods for the purification and structural characterisation of macromolecular complexes by transmission electron microscopy. The emphasis of the course is on the special practical requirements for the application of these techniques on macromolecular structures in the MDa range.
InhaltProtein synthesis is a very energy intensive process that can consume over half the total metabolism of a cell. In eukaryotes, translation is therefore tightly regulated at the stage of initiation. Regulatory processes are much more complex at this step than in prokaryotes and a large number of RNA modification processes and translation initiation factors are required to ensure faithful initiation, elongation and termination of translation. Viral messenger RNAs are often produced by their own machinery, however, and need to be incorporated into the host translation machinery without the usual processing and therefore many viruses have developed strategies to circumvent the need for initiation factors. They accomplish this through highly structured elements within their RNA called internal ribosome entry sites (IRESs) that are able to initiate translation without the normal signals. Some viral IRESs, such as the IRESs from polio-virus or HIV, require most of the normal eIFs and even additional proteins. Others, such as the hepatitis C virus IRES, are able to bind directly to the ribosome and need only a few of the normal initiation factors. Within the Ban lab, we have studied, and continue to investigate, medically relevant viral IRESs. The course will involve producing, and attempting to determine the structures of, IRESs that have yet to have had their ribosome-bound structures resolved.

A variety of purification techniques, including preparative gel electrophoresis and ultracentrifugation, will be used during the purification of macromolecular complexes. Purified assemblies will be then investigated functionally. Students will then characterise their samples structurally through transmission electron cryo-microscopy (cryo-EM), including sample preparation, microscopy, data evaluation and the calculation of densities. Finally, students will learn how to build and refine molecular models into parts of the calculated cryo-EM density. The participants will be working on a closed project related to current research within the laboratory and throughout the course the practical work will be accompanied by brief theoretical introductions. The principal aim of the course is to strengthen the skills required to independently conduct meaningful biophysical and biochemical experiments and to provide an early introduction into the structural characterisation of cellular macromolecular assemblies.
SkriptA script will be distributed at the beginning of the course that will cover the experiments to be performed, provide references to the relevant literature and suggest points for further consideration for interested students.
LiteraturLiterature
A basic overview is provided within the references below. Further reading and citations shall be detailed in the course script.
- A. Fersht, Structure and mechanism in protein science, Freeman, 1999 (Chapters 1 and 6).
- M. van Heel et al., Single-particle electron cryo microscopy: towards atomic resolution, Quart. Rev. Biophys. (33), 307-369 (2000).
Voraussetzungen / BesonderesThe course will be held in English. Students should have either completed courses:
551-0307-00L Biomolecular Structure and Mechanism I: Protein Structure and Function
551-0307-01L Biomolecular Structure and Mechanism II: Large Cellular Machines
or equivalent courses covering the structure and function of biological macromolecules.
  •  Seite  1  von  1