Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Umweltnaturwissenschaften Master Information
Vertiefung in Atmosphäre und Klima
Wahlfächer
Hydrologie und Wasserkreislauf
NummerTitelTypECTSUmfangDozierende
701-1216-00LNumerical Modelling of Weather and Climate Information W4 KP3GC. Schär, S. Soerland, J. Vergara Temprado
KurzbeschreibungThe course provides an introduction to weather and climate models. It discusses how these models are built addressing both the dynamical core and the physical parameterizations, and it provides an overview of how these models are used in numerical weather prediction and climate research. As a tutorial, students conduct a term project and build a simple atmospheric model using the language PYTHON.
LernzielAt the end of this course, students understand how weather and climate models are formulated from the governing physical principles, and how they are used for climate and weather prediction purposes.
InhaltThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction. Hands-on experience with simple models will be acquired in the tutorials.
SkriptSlides and lecture notes will be made available at
Link
LiteraturList of literature will be provided.
Voraussetzungen / BesonderesPrerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming. Previous experience with PYTHON is useful but not required.
701-1224-00LMesoscale Atmospheric Systems - Observation and Modelling
Findet dieses Semester nicht statt.
W2 KP2VH. Wernli, U. Germann
KurzbeschreibungMesoscale meteorology focusing on processes relevant for the evolution of precipitation systems. Discussion of empirical and mathematical-physical models for, e.g., fronts and convective storms. Consideration of oceanic evaporation, transport and the associated physics of stable water isotopes. Introduction to weather radar being the widespread instrument for observing mesoscale precipitation.
LernzielBasic concepts of observational and theoretical mesoscale meteorology, including precipitation measurements and radar. Knowledge about the interpretation of radar images. Understanding of processes leading to the formation of fronts and convective storms, and basic knowledge on ocean evaporation and the physics of stable water isotopes.
701-1280-00LSelf-learning Course on Advanced Topics in Atmospheric and Climate Science Belegung eingeschränkt - Details anzeigen
Please contact one of the professors listed under prerequisites/notice if you plan to take this course.

Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors.
W3 KP6ABetreuer/innen
KurzbeschreibungThis course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields:
- atmospheric chemistry
- atmospheric circulation and predictability
- atmospheric dynamics
- atmospheric physics
- climate modeling
- climate physics
- land-climate dynamics
LernzielThe learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD).
InhaltThe course has the following elements:
Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers)
Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University:
Link
Weeks 6 and 9: Meetings with supervisor to clarify scientific questions
Week 12: Hand-in of written summary (4 pages maximum)
Week 14: Supervisor provides written feedback to the summary document
Week 16: Oral exam about the scientific topic
LiteraturLiterature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student.
Voraussetzungen / BesonderesPrerequisites depend on the chosen field and include successful completion of the listed lecture courses:
• atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L)
• atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L).
• atmospheric physics: “Atmospheric Physics” (701-0475-00L)
• climate physics: “Klimasysteme” (701-0412-00L) or equivalent
• land-climate dynamics: “Land-climate dynamics” (701-1251-00L)
• climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible)
• atmospheric circulation and predictability: “Dynamics of large-scale atmospheric flow” (701-1221-00L)

If you plan to take this course, please contact one of the professors according to your interest.
• atmospheric chemistry (Prof. T. Peter)
• atmospheric circulation and predictability (Prof. D. Domeisen)
• atmospheric dynamics (Prof. H. Wernli)
• atmospheric physics (Prof. U. Lohmann)
• climate modeling (Prof. C. Schär)
• climate physics (Prof. R. Knutti)
• land-climate dynamics (Prof. S. Seneviratne)
102-0448-00LGroundwater IIW6 KP4GM. Willmann, J. Jimenez-Martinez
KurzbeschreibungThe course is based on the course 'Groundwater I' and is a prerequisite for a deeper understanding of groundwater flow and contaminant transport problems with a strong emphasis on numerical modeling.
LernzielThe course should enable students to understand advanced concepts of groundwater flow and transport and to apply groundwater flow and transport modelling.

the student should be able to
a) formulate practical flow and contaminant transport problems.

b) solve steady-state and transient flow and transport problems in 2 and 3 spatial dimensions using numerical codes based on the finite difference method and the finite element methods.

c) solve simple inverse flow problems for parameter estimation given measurements.

d) assess simple multiphase flow problems.

e) assess spatial variability of parameters and use of stochastic techniques in this task.

f) assess simple coupled reactive transport problems.
InhaltIntroduction and basic flow and contaminant transport equation.

Numerical solution of the 3D flow equation using the finite difference method.

Numerical solution to the flow equation using the finite element equation

Numerical solution to the transport equation using the finite difference method.

Alternative methods for transport modeling like method of characteristics and the random walk method.

Two-phase flow and Unsaturated flow problems.

Spatial variability of parameters and its geostatistical representation -geostatistics and stochastic modelling.

Reactive transport modelling.
SkriptHandouts
Literatur- Anderson, M. and W. Woessner, Applied Groundwater Modeling, Elsevier Science & Technology Books, 448 p., 2002

- J. Bear and A. Cheng, Modeling Groundwater Flow and Contaminant Transport, Springer, 2010

- Appelo, C.A.J. and D. Postma, Geochemistry, Groundwater and Pollution, Second Edition, Taylor & Francis, 2005

- Rubin, Y., Applied Stochastic Hydrology, Oxford University Press, 2003

- Chiang und Kinzelbach, 3-D Groundwater Modeling with PMWIN. Springer, 2001.
Voraussetzungen / BesonderesEach afternoon will be divided into 2 h of lectures and 2h of exercises. Two thirds of the exercises of the course are organized as a computer workshop to get hands-on experience with groundwater modelling.
102-0468-00LWatershed Modelling Information W3 KP2GP. Molnar
KurzbeschreibungIntroduction to watershed modelling with applications of GIS in hydrology, the use of semi- and fully-distributed continuous watershed models, and their calibration and validation. The course contains substantive practical modelling experience in several assignments.
LernzielWatershed Modelling is a course in the Master of Science in Environmental Engineering Programme. It is a practical course in which the students learn to (a) use GIS in hydrological applications, (b) calibrate and validate models, (c) apply and interpret semi- and fully- distributed continuous watershed models, and (d) discuss several modelling case studies. This course is a follow up of Hydrology 2 and requires solid computer skills.
Inhalt- Introduction to watershed modelling
- GIS in watershed modelling (ArcGIS exercise)
- Calibration and validation of models
- Semi-distributed modelling with PRMS (model description, application)
- Distributed watershed modelling with TOPKAPI (model description, application)
- Modelling applications and case studies (climate change scenarios, land use change, basin erosion)
Literatur- Lecture presentations
- Exercise documentation
- Relevant scientific papers
all posted on the course website
102-0488-00LWater Resources ManagementW3 KP2GP. Burlando
KurzbeschreibungModern engineering approach to problems of sustainable water resources, planning and management of water allocation requires the understanding of modelling techniques that allow to account for comprehensive water uses (thereby including ecological needs) and stakeholders needs, long-term analysis and optimization. The course presents the most relevant approaches to address these problems.
LernzielThe course provides the essential knowledge and tools of water resources planning and management. Core of the course are the concepts of data analysis, simulation, optimization and reliability assessment in relation to water projects and sustainable water resources management.
InhaltThe course is organized in four parts.
Part 1 is a general introduction to the purposes and aims of sustainable water resources management, problem understanding and tools identification.
Part 2 recalls Time Series Analysis and Linear Stochastic Models. An introduction to Nonlinear Time Series Analysis and related techniques will then be made in order to broaden the vision of how determinism and stochasticity might sign hydrological and geophysical variables.
Part 3 deals with the optimal allocation of water resources and introduces to several tools traditionally used in WRM, such as linear and dynamic programming. Special attention will be devoted to optimization (deterministic and stochastic) and compared to simulation techniques as design methods for allocation of water resources in complex and competitive systems, with focus on sustainability and stakeholders needs.
Part 4 will introduce to basic indexes used in economical and reliability analyses, and will focus on multicriteria analysis methods as a tool to assess the reliability of water systems in relation to design alternatives.
SkriptA copy of the lecture handouts will be available on the webpage of the course. Complementary documentation in the form of scientific and technical articles, as well as excerpts from books will be also made available.
LiteraturA number of book chapters and paper articles will be listed and suggested to read. They will also be part of discussion during the oral examination.
Voraussetzungen / BesonderesSuggested relevant courses: Hydrologie I (or a similar content course) and Wasserhaushalt (Teil "Wasserwirtschaft", 4. Sem. UmweltIng., or a similar content course) for those students not belonging to Environmental Engineering.
860-0012-00LCooperation and Conflict Over International Water Resources Belegung eingeschränkt - Details anzeigen
Number of participants limited to 40.
STP students have priority.

This is a research seminar at the Master level. PhD students are also welcome.
W3 KP2SB. Wehrli, T. Bernauer, T. U. Siegfried
KurzbeschreibungThis seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail.
LernzielAbility to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail.
InhaltBased on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester.
SkriptSlides and reading materials will be distributed electronically.
LiteraturThe UN World Water Development Reports provide a broad overview of the topic: Link
Voraussetzungen / BesonderesThe course is open to Master and PhD students from any area of ETH.

ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study.
  •  Seite  1  von  1