Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Bauingenieurwissenschaften Master Information
2. Semester
Vertiefung in Konstruktion
101-0138-00LBridge DesignW6 KP4GW. Kaufmann
KurzbeschreibungThis course presents the fundamentals of bridge design. It covers the entire range from conceptual design to construction, encompassing all relevant building materials. The focus lies on the structural behaviour today’s most important bridge typologies and their suitability for certain boundary conditions, the dimensioning of the main structural elements as well as construction methods.
LernzielAfter successful completion of this course, the student should be able to:
- Define the main bridge design parameters and identify constraints and boundary conditions
- Explain the structural behaviour and peculiarities of today’s most important bridge typologies
- Explain the main elements of bridges and their structural behaviour
- Define the relevant actions on bridges
- Dimension a standard bridge (pre-dimensioning by hand; dimensioning using computer-aided tools)
- Explain the most relevant bridge construction and erection methods
- Select an appropriate typology and conceive a convincing bridge for a site with its specific boundary conditions
InhaltThe course is built up as follows:
Conceptual design
Girder and slab bridges (including common aspects of all typologies)
Frame and strut-frame bridges
Arch bridges
Cable-stayed bridges
Suspension and stress-ribbon bridges
Control and monitoring
SkriptLecture notes
LiteraturMenn C. Prestressed Concrete Bridges. Basel: Birkhäuser Basel; 1990. doi:10.1007/978-3-0348-9131-8.
101-0148-01LHochbauW3 KP2GA. Frangi, H. Seelhofer
KurzbeschreibungWechselwirkungen zwischen Bauwerk und Tragwerk, Erkennen und Qualifizieren der relevanten Zusammenhänge. Konsequenzen für den Entwurf und die Konzeption des Tragwerks. Auswahl an Tragwerksformen im Spiegel der möglichen Einflussgrössen.
LernzielEinführung in eine ganzheitliche Betrachtung von Hochbauten aus der Sicht des Bauingenieurs.
Wechselwirkung zwischen Bauwerk und Tragwerk
Tragstrukturen und Tragsysteme des Hochbaus
Stabilisierung von Tragwerken und Bauteilen
Literatur"Hochbau für Ingenieure", Bachmann Hugo, vdf Verlag Zürich und B.G. Teubner Verlag Stuttgart, 1993
101-0158-01LMethod of Finite Elements IW4 KP2GE. Chatzi, P. Steffen
KurzbeschreibungThis course will introduce students to the fundamental concepts of the widely established Method of Finite Elements including element formulations, numerical solution procedures and modelling details. The course will also equip students with the ability to code algorithms (largely based on MATLAB) for the solution of practical problems in Infrastructure and Civil engineering.
LernzielThe Direct Stiffness Method is revisited and the basic principles of Matrix Structural Analysis are overviewed.
The basic theoretical concepts of the Method of Finite Elements are imparted and perspectives for problem solving procedures are provided.
Linear finite element models for truss and continuum elements are introduced and their application for structural elements is demonstrated.
The Method of Finite Elements is implemented on practical problems through accompanying demonstrations and assignments.
Inhalt1) Introductory Concepts
Matrices and linear algebra - short review.

2) The Direct Stiffness Method
Demos and exercises in MATLAB & Commercial FE software

3) Formulation of the Method of Finite Elements.
- The Principle of Virtual Work
- Isoparametric formulations
- 1D Elements (truss, beam)
- 2D Elements (plane stress/strain)
Demos and exercises in MATLAB & Commercial FE software

4) Practical application of the Method of Finite Elements.
- Practical Considerations
- Results Interpretation
- Final Project where a Real Test Case is modelled and analyzed
SkriptThe lecture notes are in the form of slides, available online from the course webpage
LiteraturStructural Analysis with the Finite Element Method: Linear Statics, Vol. 1 & Vol. 2 by Eugenio Onate (available online via the ETH Library)

Supplemental Reading
Bathe, K.J., Finite Element Procedures, Prentice Hall, 1996.
Voraussetzungen / BesonderesPrior basic knowledge of MATLAB is necessary.
101-0168-00LHolzbau IIW3 KP2GA. Frangi
KurzbeschreibungVerständnis der theoretischen Grundlagen und der konstruktiven Belange des Ingenieur-Holzbaus. Erkennen der holzspezifischen Besonderheiten, insbesondere der Anisotropie, der Schwind- und Quellverformungen und der Langzeiteinflüsse sowie deren konstruktive und bemessungstechnische Bewältigung. Entwurf, Konstruktion und Bemessung von Dach-, Hallen- und Brückenbauten.
LernzielVerständnis und Anwendung der theoretischen Grundlagen und der konstruktiven Belange des Ingenieur-Holzbaus. Erkennen der holzspezifischen Besonderheiten, insbesondere der Anisotropie, der Schwind- und Quellverformungen und der Langzeiteinflüsse, sowie deren konstruktive und bemessungstechnische Bewältigung. Bemessung von Dach-, Hallen- und Brückenbauten.
InhaltAnwendungsgebiete des Holzbaus (materialspezifische Merkmale und deren Auswirkung auf die Konstruktionsweise); Holz als Baustoff (Aufbau des Holzes, Sortierung, physikalische und mechanische Eigenschaften von Holz und Holzwerkstoffen); Dauerhaftigkeit und konstruktiver Holzschutz; Bemessungsgrundlagen und Verbindungen (Verleimung, Nägel, Dübel, Bolzen, Schrauben); Bauteile und wichtigste ebene und räumliche Tragwerke (Berechnung und Bemessung unter Beachtung nachgiebiger Verbindungen); besondere konstruktive Belange des Dach-, Hallen- und Brückenbaus.
SkriptAutographie Holzbau
LiteraturHolzbautabellen HBT 1, Lignum (2012)
Norm SIA 265 (2012)
Norm SIA 265/1 (2009)
Voraussetzungen / BesonderesVoraussetzungen: Kenntnisse in Baustatik
101-0188-00LSeismic Design of Structures IW3 KP2GA. Tsiavos
KurzbeschreibungThe following topics are covered: 1) origin and quantification of earthquake hazard; 2) seismic response of elastic and inelastic structures; 3) response history and response spectrum evaluation methods; 4) basis for seismic design codes; and 5) fundamentals of seismic design of structures. These topics are discussed in framework of performance-based seismic design.
LernzielAfter successfully completing this course the students will be able to:
1. Explain the nature of earthquake hazard and risk.
2. Explain the seismic response of simple linear and nonlinear single- and multi-degree-of-freedom structural systems and quantify it using response time history and response spectrum approaches.
3. Apply design code provisions to size the structural elements in a lateral force resisting system of a typical frame building.
InhaltThis course initiates the series of two courses on seismic design of structures at ETHZ. Building on the material covered in the course on Structural Dynamics and Vibration Problems, the following fundamental topics are covered in this course: 1) origin and quantification of earthquake hazard; 2) seismic response of elastic and inelastic single- and multiple-degree-of-freedom structures; 3) response history and response spectrum seismic response evaluation methods; 4) basis for seismic design codes; and 5) fundamentals of seismic design of structures. These topics are discussed in framework of performance-based seismic design.
SkriptElectronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions.
Literatur1. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2012
2. Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004
3. Erdbebensicherung von Bauwerken, 2nd edition, Hugo Bachmann, Birkhäuser, Basel, 2002
Voraussetzungen / BesonderesETH Structural Dynamics and Vibration Problems course, or equivalent. Students are expected to be able to compute the response of elastic single- and multiple-degree-of-freedom structural systems in free vibration, as well as in forced vibration under harmonic and pulse excitation, to use the response spectrum method and to understand and be able to apply the modal response analysis method for multiple-degree-of-freedom structures. Knowledge of structural analysis and design of reinforced concrete or steel structures under static loads is expected. Familiarity with general-purpose numerical analysis software, such as Matlab, and structural analysis software, such as SAP2000, is desirable.
101-0178-01LUncertainty Quantification in Engineering Information W3 KP2GS. Marelli
KurzbeschreibungUncertainty quantification aims at studying the impact of aleatory and epistemic uncertainty onto computational models used in science and engineering. The course introduces the basic concepts of uncertainty quantification: probabilistic modelling of data (copula theory), uncertainty propagation techniques (Monte Carlo simulation, polynomial chaos expansions), and sensitivity analysis.
LernzielAfter this course students will be able to properly pose an uncertainty quantification problem, select the appropriate computational methods and interpret the results in meaningful statements for field scientists, engineers and decision makers. The course is suitable for any master/Ph.D. student in engineering or natural sciences, physics, mathematics, computer science with a basic knowledge in probability theory.
InhaltThe course introduces uncertainty quantification through a set of practical case studies that come from civil, mechanical, nuclear and electrical engineering, from which a general framework is introduced. The course in then divided into three blocks: probabilistic modelling (introduction to copula theory), uncertainty propagation (Monte Carlo simulation and polynomial chaos expansions) and sensitivity analysis (correlation measures, Sobol' indices). Each block contains lectures and tutorials using Matlab and the in-house software UQLab (Link).
SkriptDetailed slides are provided for each lecture. A printed script gathering all the lecture slides may be bought at the beginning of the semester.
Voraussetzungen / BesonderesA basic background in probability theory and statistics (bachelor level) is required. A summary of useful notions will be handed out at the beginning of the course.

A good knowledge of Matlab is required to participate in the tutorials and for the mini-project.
101-0149-00LFlächentragwerkeW3 KP2GT. Vogel, S. Fricker
KurzbeschreibungGrundzüge des Tragverhaltens von Flächentragwerken
LernzielVerständnis des Tragverhaltens von Flächentragwerken in den wichtigsten Grundzügen; Kenntnis typischer Anwendungen in verschiedenen Materialien; Fähigkeit, Resultate numerischer Berechnungen vernünftig interpretieren und kontrollieren zu können; Eröffnung des Zugangs zur Fachliteratur.
InhaltElastische Scheiben (kartesische und Polarkoordinaten)
Kinematik Scheiben
Kirchhoffsche Platten
Rotationssymmetrische Platten
Dünne elastische Platten mit grossen Durchbiegungen
Geometrie der gekrümmten Fläche
Schalen (Grundlagen, Membrantheorie, Biegetheorie, Formfindung)
SkriptAutographie "Flächentragwerke"
- Girkmann, K.: "Flächentragwerke", Springer-Verlag, Wien, 1963, 632 pp.
- Flügge, S.: "Stresses in Shells", Springer-Verlag, Berlin, 1967, 499 pp.
- Hake, E. ; Meskouris,K. : "Statik der Flächentragwerke", Springer-Verlag, Berlin, 2001
- Timoshenko, S.P.; Woinowsky-Krieger, S.: "Theory of Plates and Shells", McGraw-Hill, New-York, 1959, 580 pp.
101-0008-00LStructural Identification and Health MonitoringW3 KP2GE. Chatzi, V. Ntertimanis
KurzbeschreibungThis course will present methods for assessing the condition of structures based on monitoring. The term "monitoring" corresponds to measurements of structural response (e.g. strains, deflections, accelerations), which are nowadays available from low-cost and easily deployed sensor technologies. We show how to exploit sensing technology for maintaining a safe and resilient infrastructure.
LernzielThis course aims at providing a graduate level introduction into the identification and condition assessment of structural systems.

Upon completion of the course, the students will be able to:
1. Test Structural Systems for assessing their condition, as this is expressed through stiffness
2. Analyse sensor signals for identifying characteristic structural properties, such as frequencies, mode shapes and damping, based on noisy or incomplete measurements of the structural response.
3. Establish relationships governing structural response (e.g. dynamics equations)
4. Identify possible damage into the structure by picking up statistical changes in the structural "signature" (behavior)
InhaltThe course will include theory and algorithms for system identification, programming assignments, as well as laboratory and field testing, thereby offering a well-rounded overview of the ways in which we may extract response data from structures.

The topics to be covered are :

1. Fundamentals of dynamic analysis (vibrations)
2. Fundamentals of signal processing
3. Modal Testing for determining the modal properties of Structural Systems
4. Parametric & Nonparametric Identification for processing test and measurement data
i) in the frequency domain (Spectral Analysis, Frequency Domain decomposition)
ii) in the time domain (Autoregressive models, the Kalman Filter)
5. Damage Detection via Stochastic Methods

A comprehensive series of computer/lab exercises and in-class demonstrations will take place, providing a "hands-on" feel for the course topics.

The final grade will be obtained, either
- by 30% from the graded exercises and 70% from the written session examination, or
- by the written session examination exclusively.
The highest ranking of the above two options will be used, so that assignments are only used to strengthen the grade.
SkriptThe course script is composed by the lecture slides, which are available online and will be continuously updated throughout the duration of the course: Link
LiteraturSuggested Reading:
T. Söderström and P. Stoica: System Identification, Prentice Hall International: Link
Voraussetzungen / BesonderesFamiliarity with MATLAB is advised.
052-0610-00LEnergie- und Klimasysteme II Information W2 KP2GA. Schlüter
KurzbeschreibungIm zweiten Semester des Jahreskurses werden die wesentlichen physikalischen Prinzipien, Konzepte, Komponenten und Systeme für die effiziente und erneuerbare Versorgung von Gebäude mit Strom und Licht sowie deren Automation behandelt. Abhängigkeiten und Interaktionen zwischen technischen Systemen und dem architektonischen und städtebaulichen Entwerfen werden aufgezeigt.
LernzielZiel der Vorlesung ist die Kenntnis der physikalischen Grundlagen, der relevanten Konzepte und technischen Systeme für die effiziente und nachhaltige Versorgung von Gebäuden. Mittels überschlägiger Berechnungsmethoden wird die Ermittlung relevanter Grössen und die Identifikation wichtiger Parameter geübt. Auf diese Weise können passende Ansätze für den eigenen Entwurf ausgewählt, qualitativ und quantitativ bewertet und integriert werden.
InhaltEffiziente Gebäude und integrierte Konzepte
Erneuerbare Energieerzeugung am Gebäude
Tages- und Kunstlicht
Intelligente Gebäude: Raumautomation und Nutzer
Urbane Energiesysteme
SkriptDie Folien aus der Vorlesung dienen als Skript und sind als download erhältlich.
LiteraturEine Liste weiterführender Literatur ist am Lehrstuhl erhältlich.
101-0194-00LSeismic Evaluation and Retrofitting of Existing StructuresW2 KP1GA. Tsiavos
KurzbeschreibungThe aim of this course is to present the state of the art of the current procedures for seismic evaluation and retrofitting of existing structures in Switzerland (Norm SIA 269/8) and worldwide. Emphasis will be given on the practical application of these procedures in real structures located in Switzerland, through case studies presented by experts in the field.
LernzielA large percentage of the existing building inventory worldwide has been constructed before the introduction of the current seismic code provisions. The seismic deficiencies observed in many of these structures are a direct outcome of their non-compliance with these provisions and the established engineering practices in seismic design. Moreover, the unavoidable material deterioration in these structures could further inhibit their seismic performance. Therefore, the knowledge of the current procedures and common practices for the seismic evaluation and retrofitting of structures is of paramount importance. This course presents an overview of these procedures through a wide spectrum of applied case studies in Switzerland and worldwide. The students will work on a project related to the presented case studies, thus obtaining deep understanding on the application of these procedures and a feeling on how to engineer practical retrofitting strategies towards the seismic upgrading of existing structures.
Inhalt1. Introduction to seismic hazard and seismic performance objectives.
2. Common structural deficiencies and observed damage patterns due to strong earthquake ground motion excitation.
3. Seismic evaluation of structures in Switzerland using Norm SIA 269/8: Presentation of the code in steps and discussion of the critical issues.
4. Seismic retrofitting of structures in Switzerland using Norm SIA 269/8: Presentation of the code in steps and discussion of the critical issues.
5. Application of seismic evaluation using SIA 269/8 on an existing structure in Switzerland.
6. Application of seismic retrofitting using SIA 269/8 on an existing structure in Switzerland.
7. Seismic evaluation methodologies worldwide: State of the art. Presentation of illustrative examples.
8. Introduction to Yield Point Spectra and the Constant Yield Displacement Evaluation (CYDE) method.
9. Seismic retrofitting strategies worldwide: State of the art. Presentation of illustrative examples.
Voraussetzungen / BesonderesThe attendance of the course Existing Structures (Erhaltung von Tragwerken-101-0129-00L) and the participation in the course Seismic Design of Structures I (101-0188-00L) in parallel with this course are highly recommended.
101-0195-00LModeling and Simulation of Earthquakes, Soils, Structures and their Interaction Information W3 KPB. Jeremic
KurzbeschreibungThis course will provide students with state of the art finite element methods, tools and models for dynamic modeling and simulation of earthquakes, soils, structures and their interaction.
LernzielThis course presents the state of the art finite element methods, tools and models for dynamic modeling and simulation of earthquakes, soils, structures and their interaction. Presentation of the theoretical aspects of Earthquake Soil Structure Interaction (ESSI) will be illustrated using models built using the Real-ESSI Simulator software system.
InhaltWeek I
Course objectives, methodology, computer modeling and simulation system Real-ESSI Simulator.
Computational Mechanics field of study, kinematics of deformation, strain, stress, linear and nonlinear elasticity, dynamic equilibrium relations, d’Alembert’s principle, forces in dynamic equilibrium, mass, damping, stiffness, external force, nonlinear analysis cycles

Week II
Dynamic finite element method (FEM) equations, virtual work method in dynamics, nonlinear dynamic equations of motion, consistent and lumped mass, velocity and displacement proportional damping, Rayleigh and Caughey damping, linear and nonlinear material behavior.

Week III
Incremental, continuum elasto-plasticity, Material Models (perfectly plastic, hardening and softening. Explicit (forward Euler) and Implicit (backward Euler) constitutive integrations

Week IV
Direct, time marching solution for dynamics of nonlinear, inelastic systems, general Newmark family of methods, sta-bility and accuracy, nonlinear resonance, numerical damping, explicit and implicit algorithms, unconditionally and conditionally stable Newmark and Hilber–Hughes–Taylor α–method, stability and accuracy, examples)

Week V
Contact modeling: Hard contact, Soft contact. Axial contact stiffness, shear contact stiffness. Contact gap opening and closing. Saturated contacts, effective stress and buoyant forces on foundations.

Week VI
Inelastic structural models, beams, plates, walls and shells.

Week VII
Parallel Computing for elastic-plastic computations, static and dynamic domain decompositions methods, Course and fine grained high performance computing. Multiprocessors, multi-core, graphical processing units (GPUs).

Elastic–plastic FEM modeling, practical recommendations for development and analysis of nonlinear, elastic-plastic finite element models, phased development of general FEM, and ESSI in particular, models. Core Functionality for inelas-tic/nonlinear modeling.

Week IX
Introduction: Earthquake Soil Structure Interaction (ESSI) Background, problem definition, seismic motions, seismic body and surface wave field, seismic energy propagation, free field motions, beneficial and detrimental effects, balancing input and dissipated energy.

Week X
Seismic Motions: Free field vs ESSI motions, incoherent motions, Domain Reduction Method, boundary conditions, radiation damping, 3D inclined wave fields vs 1D vertical motions, nonlinear wave propagation simulations, time step size, element size, earthquake modeling.

Week XI
Free field motions development, 1C motions, deconvolution and convolution, 3C/6C motions, 3D plane wave solution, regional scale geophysical models, Bay Area regional scale model, (guest lecture by a geophysics expert), use of SW4 program for free field motion development.

Week XII
ESSI and Liquefaction, fully coupled, porous solid – pore fluid systems formulation, discretization, basic system of DOFs, coupling damping forces, specialization to slow (consolidation) and fast phenomena (ESSI, liquefaction), boundary conditions, initial conditions, stability and accuracy of various algorithms.

Verification and Validation (definition, procedures, code verification, solution verification, validation experiments, model verification (!))

Week XIV
ESSI Modeling and Simulation Synthesis: example building structure (boundary conditions, initial conditions, nonlinear contact (gap/slip), nonlinear soil/rock, 1D vs 3D seismic motions development, buoyant forces at foundation level, etc.)
SkriptLecture notes will be provided by the instructor at:

More information about the Real-ESSI Simulator can be found at
Literatur- The Finite Element Method, Olgierd Cecil Zienkiewicz and Robert L. Taylor, McGraw-Hill Book Company, Volumes 1, 2 and 3.
- Non-Linear Finite Element Analysis of Solids and Structures Volume 1: Essentials, Crisfield, M. A., John Wiley and Sons, Inc. New York, 1991, ISBN 0 471 92956 5 v.1
- Finite Element Procedures in Engineering Analysis, Klaus-Juergen Bathe, Prentice Hall, ISBN 0-13-301458-4
- Constitutive Laws for Engineering Materials With Emphasis on Geologic Materials Chandrakant S. Desai and Hema J. Siriwar-dane, Prentice–Hall, Inc. Englewood Cliffs, NJ 07632, ISBN 0-13-167940-6
-Plasticity Theory. Lubliner, Jacob , Macmillan Publishing Company, New York, ISBN 0–02-372161-8
- Plasticity for Structural Engineers W. F. Chen and D. J. Han , Springer Verlag, 1988 ISBN 0-387-96711-7
- Dynamics of Structures, John Argyris and Hans-Peter Mlejnek. North Holland (USA Elsevier), 1991.
- Introduction to Computational Earthquake Engineering, Muneo Hori, Imperial College Press, 2006.
- Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction works. Jean-Fran¸cois Semblat and Alain Pecker. IUSS Press, first edition, 2009.
- Quantitative Seismology, Keiiti Aki and Paul G. Richards. University Science Books, 2nd edition, 2002.
- The Finite Element Method ; Linear Static and Dynamic Finite Element Analysis Thomas J. R. Hughes. Prentice Hall Inc., 1987.
- Nonlinear Finite Elements: Modeling and Simulation of Earthquakes, Soils, Structures and their Interaction. Boris Jeremi´c, Zhaohui Yang, Zhao Cheng, Guanzhou Jie, Nima Tafazzoli, Matthias Preisig, Panagiota Tasiopoulou, Federico Pisano, Jose Abell, Kohei Watanabe, Yuan Feng, Sumeet Kumar Sinha, Fatemah Behbehani, Han Yang, and Hexiang Wang. University of California, Davis, CA, USA; and Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 1989-2019. ISBN: 978-0-692-19875-9
Voraussetzungen / BesonderesConsent of Instructor.

Computers: Most of the problems in this course will require numerical simulations. A finite element modeling system called Real-ESSI/Real-ESSI Simulator system ( will be made available through Amazon Web Services (AWS)) and will be used for assignments, examples and term project. Other programs can be used as well, provided that they provide needed functionality.
  •  Seite  1  von  1