Suchergebnis: Katalogdaten im Frühjahrssemester 2020
Energy Science and Technology Master ![]() | ||||||
![]() - Wählbare Kernfächer des Studienreglements 2007 - Wahlfächer des Studienreglements 2018 Diese Kurse sind besonders empfohlen, andere ETH-Kurse aus dem Feld Energy Science and Technology im weiteren Sinne können in Absprache mit dem Tutor gewählt werden. | ||||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
101-0206-00L | Wasserbau | W | 5 KP | 4G | R. Boes | |
Kurzbeschreibung | Wasserbauliche Systeme, Anlagen und Bauwerke (z.B. Talsperren, Fassungen, Stollen, Leitungen, Kanäle, Wehre, Krafthäuser, Schleusen), Grundlagen des Flussbaus und der Naturgefahren | |||||
Lernziel | Kenntnis wasserbaulicher Anlageteile und ihrer Funktion innerhalb wasserbaulicher Systeme; Befähigung zu Entwurf und Dimensionierung hinsichtlich Gebrauchstauglichkeit, Sicherheit und Wirtschaftlichkeit | |||||
Inhalt | Wasserbauliche Systeme: Speicher, Nieder- und Hochdruckanlagen. Wehre: Wehrarten, Verschlüsse, Hydraulische Bemessung. Fassungen: Fassungstypen, Entsandungsanlagen. Kanäle: konstruktive Gestaltung, offene und geschlossene Kanäle. Leitungen: Auskleidungstypen, hydraulische Bemessung von Druckstollen und Druckschächten. Talsperren: Talsperrentypen, Nebenanlagen. Flussbau: Abflussberechnung, Sedimenttransport, flussbauliche Massnahmen. Naturgefahren: Überblick und Grundlagen zu Art und Schutzmassnahmentypen. Verkehrswasserbau: Schifffahrtskanäle und Schleusen. Schriftliche Übungen, Übung im hydraulischen Labor und am Computer. Exkursion. | |||||
Skript | Umfassendes Wasserbau-Skript. Ergänzende Vorlesungsunterlagen. | |||||
Literatur | weiterführende Literatur ist am Ende des jeweiligen Skript-Kapitels angegeben. Empfehlenswerte Fachbücher: - Giesecke, J., Heimerl, S. & Mosonyi, E. (2014): Wasserkraftanlagen (6. Auflage), Springer-Verlag, Berlin - Patt, H. & Gonsowsky, P. (2011): Wasserbau (7. Auflage), Springer-Verlag, Berlin - Bollrich, G. (2000): Technische Hydromechanik, Verlag für Bauwesen, Berlin - Strobl, T., Zunic, F. (2006): Wasserbau, Springer-Verlag, Berlin, Heidelberg. - Hager, W.H., Schleiss, A.J. (2009): Constructions Hydrauliques; Traité de Génie Civil, Vol. 15, Presses Polytechniques et Universitaires Romandes, Lausanne. | |||||
Voraussetzungen / Besonderes | als Grundlage dringend empfohlen: Hydraulik I (Vorlesung 101-0203) | |||||
101-0588-01L | Re-/Source the Built Environment | W | 3 KP | 2S | G. Habert | |
Kurzbeschreibung | The course focuses on material choice and energy strategies to limit the environmental impact of construction sector. During the course, specific topics will be presented (construction technologies, environmental policies, social consequences of material use, etc.). The course aims to present sustainable options to tackle the global challenge we are facing and show that "it is not too late". | |||||
Lernziel | After the lecture series, the students are aware of the main challenges for the production and use of building materials. They know the different technologies/propositions available, and environmental consequence of a choice. They understand in which conditions/context one resource/technology will be more appropriate than another | |||||
Inhalt | A general presentation of the global context allows to identify the objectives that as engineer, material scientist or architect needs to achieve to create a sustainable built environment. The course is then conducted as a serie of guest lectures focusing on one specific aspect to tackle this global challenge and show that "it is not too late". The lecture series is divided as follows: - General presentation - Notion of resource depletion, resilience, criticality, decoupling, etc. - Guest lectures covering different resources and proposing different option to build or maintain a sustainable built environment. | |||||
Skript | For each lecture slides will be provided. | |||||
Voraussetzungen / Besonderes | The lecture series will be conducted in English and is aimed at students of master's programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and USYS. No lecture will be given during Seminar week. | |||||
151-0160-00L | Nuclear Energy Systems | W | 4 KP | 2V + 1U | H.‑M. Prasser, P. Burgherr, I. Günther-Leopold, W. Hummel, T. Kämpfer, T. Kober, X. Zhang | |
Kurzbeschreibung | Kernenergie und Nachhaltigkeit, Urangewinnung, Urananreicherung, Kernbrennstoffherstellung, Wiederaufarbeitung ausgedienter Brennelemente, Entsorgung von radioaktivem Abfall, Lebenszyklusanalyse, Energie- und Stoffbilanzen von Kernkraftwerken. | |||||
Lernziel | Die Studenten erhalten einen Überblick über die physikalisch-chemischen Grundlagen, die technologischen Prozesse und die Entwicklungstrends in Bereich der gesamten nuklearen Energieumwandlungskette. Sie werden in die Lage versetzt, die Potentiale und Risiken der Einbettung der Kernenergie in ein komplexes Energiesystem einzuschätzen. | |||||
Inhalt | (1) Überblick über den kosmischen und geologischen Ursprung von Uranvorkommen, Methoden des Uranbergbaus, der Urangewinnung aus dem Erz, (2) Urananreicherung (Diffusionszellen, Ultrazentrifugen, alternative Methoden), chemische Konvertierung Uranoxid - Fluorid - Oxid, Brennelementfertigung, Abbrand im Reaktor. (3) Wiederaufarbeitung abgebrannter Brennelemente (hydro- und pyrochemisch) einschliesslich der modernen Verfahren der Tiefentrennung hochaktiver Abfälle, Methoden der Minimierung von Menge und Radiotoxizität des nuklearen Abfalls, (4) Entsorgung von Nuklearabfall, Abfallkategorien und -herkunft, geologische und künstliche Barrieren in Tiefenlagern und deren Eigenschaften, Projekt für ein geologisches Tiefenlager für radioaktive Abfälle in der Schweiz, (5) Methoden zur Ermittlung der Nachhaltigkeit von Energiesystemen, Masse der Nachhaltigkeit, Vergleich der Kernenergie mit anderen Energieumwandlungstechnologien, Umwelteinfluss des Kernenergiesystems als Ganzes, spezieller Aspekt CO2-Emissionen, CO2-Reduktionskosten. Die Materialbilanzen unterschiedlicher Varianten des Brennstoffzyklus werden betrachtet. | |||||
Skript | Vorlesungsfolien werden verteilt und in digitaler Form bereit gestellt. | |||||
151-0206-00L | Energy Systems and Power Engineering | W | 4 KP | 2V + 2U | R. S. Abhari, A. Steinfeld | |
Kurzbeschreibung | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||
Lernziel | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||
Inhalt | World primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the -art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal power generation and solar photovoltaics. Hydrogen as energy carrier. Fuel cells: characteristics, fuel reforming and combined cycles. Nuclear power plant technology. | |||||
Skript | Vorlesungsunterlagen werden verteilt | |||||
151-0226-00L | Energy and Transport Futures | W | 4 KP | 3G | K. Boulouchos, P. J. de Haan van der Weg, G. Georges | |
Kurzbeschreibung | The course teaches to view local energy solutions as part of the larger energy system. Because it powers all sectors, local changes can have consequences reaching well beyond one sector. While we explore all sectors, we put a particular emphasis on mobility and its unique challenges. We not only cover engineering aspects, but also policymaking and behavioral economics. | |||||
Lernziel | The main objectives of this lecture are: (i) Systemic view on the Energy Sytem with emphasis on Transport Applications (ii) Students can assess the reduction of energy demand (or greenhouse gas emissions) of sectoral solutions. (iii) Students understand the advantages and disadvantages of technology options in mobility (iv) Students know policy tools to affect change in mobility, and understand the rebound effect. | |||||
Inhalt | The course describes the role of energy system plays for the well-being of modern societies, and drafts a future energy system based on renewable energy sources, able to meet the demands of the sectors building, industry and transport. The projected Swiss energy system is used as an example. Students learn how all sectoral solutions feedback on the whole system and how sector coupling could lead to optimal transformation paths. The course then focuses on the history, status quo and technical potentials of the transport sector. Policy mixes to reduce energy demand and CO2 emissions from transport are introduced. Both direct and indirect effects of different policy types are discussed. Concepts from behavioral economics (car purchase behavior and rebound effects) are presented. Preliminary schedule: Block 1. Energy technologies and policies. Climate, Environment, Security of Supply.Technology options and policies in power generation, building and industrial sectors . Block 2. Transport technologies. Technology options in mobility and their physical aspects Block 3. Transport policies Regulation, policy tools and technological potential to affect change in mobility Block 4. Energy and Transport Futures Closing loop across all sectors. Sector-coupling. | |||||
Skript | t.b.d. | |||||
Literatur | t.b.d. | |||||
151-0310-00L | Model Predictive Engine Control ![]() Number of participants limited to 55. | W | 4 KP | 2V + 1U | T. Albin Rajasingham | |
Kurzbeschreibung | For efficient and stable operation of an internal combustion engine a multitude of complex control tasks have to be handled. In this lecture the application of model predictive control for these control challenges is introduced. | |||||
Lernziel | - Learn how to design and implement model predictive control algorithms for the example system “combustion engine”. Get to know the entire process from simulation-based control development to the application at a real-world combustion engine. - Deepen the knowledge concerning the necessary control algorithms for a combustion engine. | |||||
Inhalt | - Physical phenomena and models for processes of the combustion engine such as air path and fuel path - Analysis of the control tasks arising in engine systems - Case studies for the application of model predictive control for combustion engines with the goal to handle the complex, multivariable system dynamics - Fundamentals of the implementation of model predictive control | |||||
Skript | Lecture slides will be provided after each lecture. | |||||
Literatur | L. Guzzella / C. Onder: "Introduction to Modeling and Control of Internal Combustion Engine Systems", J. Maciejowski: "Predictive Control with Constraints" | |||||
Voraussetzungen / Besonderes | Engine Systems (recommended). | |||||
151-0928-00L | CO2 Capture and Storage and the Industry of Carbon-Based Resources | W | 4 KP | 3G | M. Mazzotti, L. Bretschger, N. Gruber, C. Müller, M. Repmann, T. Schmidt, D. Sutter | |
Kurzbeschreibung | Carbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment). | |||||
Lernziel | The goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure. The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned. | |||||
Inhalt | Both the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production). Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem. The course is devided into four parts: I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources. II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics. III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration. IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry. Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics. | |||||
Skript | Power Point slides and distributed handouts | |||||
Literatur | IPCC Special Report on Global Warming of 1.5°C, 2018. http://www.ipcc.ch/report/sr15/ IPCC AR5 Climate Change 2014: Synthesis Report, 2014. www.ipcc.ch/report/ar5/syr/ IPCC Special Report on Carbon dioxide Capture and Storage, 2005. www.ipcc.ch/activity/srccs/index.htm The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014. http://www.globalccsinstitute.com/publications/global-status-ccs-2014 | |||||
Voraussetzungen / Besonderes | External lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester. | |||||
529-0191-01L | Electrochemical Energy Conversion and Storage Technologies | W | 4 KP | 3G | L. Gubler, E. Fabbri, J. Herranz Salañer | |
Kurzbeschreibung | The course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system. | |||||
Lernziel | Students will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated. | |||||
Inhalt | Overview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis. | |||||
Skript | all lecture materials will be available for download on the course website. | |||||
Literatur | - M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019). - C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007). - T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018) | |||||
Voraussetzungen / Besonderes | Basic physical chemistry background required, prior knowledge of electrochemistry basics desired. |
Seite 1 von 1