Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Energy Science and Technology Master Information
- Wählbare Kernfächer des Studienreglements 2007
- Wahlfächer des Studienreglements 2018

Diese Kurse sind besonders empfohlen, andere ETH-Kurse aus dem Feld Energy Science and Technology im weiteren Sinne können in Absprache mit dem Tutor gewählt werden.
Electrical Power Engineering
227-0117-10LMess- und VersuchstechnikW6 KP4GC. Franck, H.‑J. Weber
KurzbeschreibungEinführung in die Versuchs- und Messtechnik, wie sie Grundlage in allen Bereichen der Ingenieurswissenschaften ist. Die Vorlesung ist stark praxis- und anwendungsorientiert, und beinhaltet mehrere praktische Versuche. Die Inhalte «Mess- und Versuchstechnik» sind für alle Fachgebiete relevant, in dieser Vorlesung werden sie auch mit Beispielen aus der Hochspannungstechnik behandelt.
LernzielAm Ende der Vorlesung können die Studierenden:
• grundlegende elektrische Versuche durchführen und Messdaten, insbesondere mit dem Oszilloskop, erheben.
• ein sinnvolles Messprotokoll führen, ein klares Versuchsprotokoll erstellen und die Messgenauigkeit des Versuchs abschätzen.
• grundlegende Ursachen elektromagnetischer Störungen sowie Methoden zur Vermeidung, Reduktion oder Abschirmung beschreiben und anwenden.
• verschiedene Methoden zur Erzeugung und Messung von hohen Spannungen erklären und anwenden, sowie dazugehörende Grössen berechnen.
Inhalt- Messtechnik, Messunsicherheit, Messprotokolle
- Erzeugung und Messung hoher Spannungen
- Elektromagnetische Verträglichkeit
- Laborpraktika
LiteraturJ. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719)
A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994)
A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099)
227-0248-00LPower Electronic Systems II Information W6 KP4GJ. W. Kolar
KurzbeschreibungThis course details structures, operating ranges, and control concepts of modern power electronic systems to provide a deeper understanding of power electronic circuits and power components. Most recent concepts of high switching frequency AC/DC converters and AC/AC matrix inverters are presented. Simulation exercises, implemented in GeckoCIRCUITS, are used to consolidate the concepts discussed.
LernzielThe objective of this course is to convey knowledge of structures, operating ranges, and control concepts of modern power electronic systems. Further objectives are: to know most recent concepts and operation modes of high switching frequency AC/DC converters and AC/AC matrix inverters; to develop a deeper understanding of multi-pulse power converter circuits, transformers, and electromechanical energy converters; and to understand in-depth details of power electronic systems. Simulation exercises, implemented in the electric circuit simulator GeckoCIRCUITS, are used to consolidate the presented theoretical concepts.
InhaltConverter dynamics and control: State Space Averaging, transfer functions, controller design, impact of the input filter on the converter transfer functions.
Performance data of single-phase and three-phase systems: effect of different loss components on the efficiency characteristics, linear and non-linear single phase loads, power flow of general three-phase systems, space vector calculus.
Modeling and control of three-phase PWM rectifiers: system characterization using rotating coordinates, control structure, transfer functions, operation with symmetrical and unsymmetrical mains voltages.
Scaling laws of transformers and electromechanical actuators.
Drives with permanent magnet synchronous machines: basic function, modeling, field-oriented control.
Unidirectional AC/DC converters and AC/AC converters: voltage and current DC link converters, indirect and direct matrix converters.
SkriptLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Voraussetzungen / BesonderesPrerequisites: Introductory course on power electronics.
227-0528-00LPower System Dynamics, Control and Operation Information W6 KP4GG. Hug
KurzbeschreibungThe electric power system is a system that is never in steady state due to constant changes in load and generation inputs. This course is dedicated to the dynamical properties of the electric power grid including how the system state is estimated, generation/load balance is ensured by frequency control and how the system reacts in case of faults in the system. The course includes two excursions.
LernzielThe learning objectives of the course are to understand and be able to apply the dynamic modeling of power systems, to compute and discuss the actions of generators based on frequency control, to describe the workings of a synchronous machine and the implications on the grid, to describe and apply state estimation procedures, to discuss the IT infrastructure and protection algorithms in power systems.
InhaltThe electric power system is a system that is never in steady state due to constant changes in load and generation inputs. Consequently, the monitoring and operation of the electric power grid is a challenging task. The course starts with the introduction of general operational procedures and the discussion of state estimation which is an important tool to observe the state of the grid. The course is then dedicated to the modeling and studying of the dynamical properties of the electric power grid. Frequency control which ensures the generation/load balance in real time is the basis for real-time control and is presented in depth. For the analysis of how the system detects and reacts dynamically in fault situations, protection and dynamic models for synchronous machines are introduced.
SkriptLecture notes. WWW pages.
227-0530-00LOptimization in Energy SystemsW6 KP4GG. Hug
KurzbeschreibungThe course covers various aspects of optimization with a focus on applications to energy networks and scheduling of hydro power. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches.
LernzielAfter this class, the students should have a good handle on how to approach a research question which involves optimization and implement and solve the resulting optimization problem by choosing appropriate tools.
InhaltIn our everyday’s life, we always try to take the decision which results in the best outcome. But how do we know what the best outcome will be? What are the actions leading to this optimal outcome? What are the constraints? These questions also have to be answered when controlling a system such as energy systems. Optimization theory provides the opportunity to find the answers by using mathematical formulation and solution of an optimization problem.
The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. The applications are focused on 1) the Optimal Power Flow problem which is formulated and solved to find optimal device settings in the electric power grid and 2) the scheduling problem of hydro power plants which in many countries, including Switzerland, dominate the electric power generation. On the theoretical side, the formulation and solving of unconstrained and constrained optimization problems, multi-time step optimization, stochastic optimization including probabilistic constraints and decomposed optimization (Lagrangian and Benders decomposition) are discussed.
227-0536-00LMultiphysics Simulations for Power Systems Information
This course is defined so and planned to be an addition to the module "227-0537-00L Technology of Electric Power System Components".
However, the students who are familiar with the fundamentals of electromagnetic fields could attend only this course without its 227-0537-00-complement.
W4 KP2V + 2UJ. Smajic
KurzbeschreibungThe goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately.
LernzielThe student should learn the fundamentals of the electromagnetic, thermal, mechanical, and coupled fields simulations necessary for modern product development and research based on virtual prototyping. She / he should also learn the theoretical background of the finite element method (FEM) and its application to low- and high-frequency electromagnetic field simulation problems. The practical exercises of the course should be done by using one of the commercially available field simulation software (Infolytica, ANSYS, and / or COMSOL). After completing the course the student should be able to properly and efficiently use the software to simulate practical design problems and to understand and interpret the obtained results.
Inhalt1. Elektromagnetic Fields and Waves: Simulation Aspects (1 lecture, 2 hours)
a. Short review of the governing equations
b. Boundary conditions
c. Initial conditions
d. Linear and nonlinear material properties
e. Coupled fields (electro-mechanical and electro-thermal coupling)

2. Finite Element Method for elektromagnetic simulations (5 lectures and 3 exercises, 16 hours)
a. Scalar-FEM in 2-D (electrostatic, magnetostatic, eddy-currents, etc.)
b. Vector-FEM in 3-D (3-D eddy-currents, wave propagation, etc.)
c. Numerical aspects of the analysis (convergence, linear solvers, preconditioning, mesh quality, etc.)
d. Matlab code for 2-D FEM for learning and experimenting

3. Practical applications (5 lectures and 5 exercises, 20 hours)
a. Dielectric analysis of high-voltage equipment
b. Nonlinear quasi-electrostatic analysis of surge arresters
c. Eddy-currents analysis of power transformers
d. Electromagnetic analysis of electric machines
e. Very fast transients in gas insulated switchgears (GIS)
f. Electromagnetic compatibility (EMC)
227-0537-00LTechnology of Electric Power System ComponentsW6 KP4GC. Franck
KurzbeschreibungBasics of the technology of important components in electric power transmission and distribution systems (primary technology).
LernzielAt the end of this course, the students can name the primary components of electric power systems and explain where and why they are used. For the most important components, the students can explain the working principle in detail and calculate and derive key parameters.
InhaltBasic physical and engineering aspects for transmission and distribution of electric power. Limiting boundary conditions are not only electrical parameters, but also mechanical, thermal, chemical, environmental and economical aspects.
The lecture covers the most important traditional components, but also new trends and the dimensioning of components.
Parts of the lecture will be held by external experts in the field and there will be excursions to industrial companies.

The course "Multiphysics Simulations for Power Systems 227-0536-00L" is aligned with the present course and considered complementary.
Literaturadditional literature will be available online via the teaching document repository.
Voraussetzungen / BesonderesThe lecture "Electric Power Transmission: System & Technology" is a prerequisite.
227-0730-00LPower Market II - Modeling and Strategic PositioningW6 KP4GD. Reichelt, G. A. Koeppel
KurzbeschreibungOptionen in der Energiewirtschaft
Portfolio und Risiko Management: Hedging-Strategien und Risiko Bewertung
Optimierung und Hedging von Hydrokraftwerken
Bewertung von Kraftwerken mit Realoptionen
Kapazitätsmärkte und Quotensysteme
Komplexe Energielieferverträge mit Optionalitäten Strategische Positionierung von Energieversorgungsunternehmen
LernzielDie Studenten kennen die wesentlichen Derivate, die in der Elektrizitätswirtschaft zur Anwendung gelangen. Sie können Strategien zur Preisabsicherung erarbeiten bzw. bewerten. Sie verstehen die Optimierung von komplexen Wasserkraftwerksanlagen, kennen die Thematik der Kapazitätsmärkte und der Quotensysteme. Sie kennen die Grundlagen der Discounted Cash-flow (DCF) Methode sowie der Realoptionen und können sie für die Bewertung von Kraftwerken anwenden.
Die Studenten können komplexe Energielieferverträge in die einzelnen Komponenten zerlegen und die Risiken identifizieren.
InhaltOptionen in der Energiewirtschaft: Optionsbewertung mit Binominalen Bäumen und der Black-Scholes Formel, Sensitivitäten, implizite Volatilität
Portfolio und Risiko Management: Delta- und Gamma-neutrale Preisabsicherung, Vergleich und Bewertung von Hedging-Strategien, Risiko Identifikation und -bewertung (Fallbeispiel)
Optimierung und Hedging von Hydrokraftwerken
Bewertung von Kraftwerken, Projekten und el. Netzen mit der discounted cash-flow Methode und Anwendung von Realoptionen
Strategische Positionierung: Erarbeiten von verschiedenen Fällen (mini cases)
Kapazitätsmärkte und Quotensysteme
Anwendungen von Derivaten: komplexe Energielieferverträge mit Optionalitäten, flexible Produkte für Stromkunden
Quantifizieren des Gegenparteirisikos
Marketing des Produktes "Elektrizität"
SkriptHandouts - all material in English
Voraussetzungen / Besonderes2-tägige Exkursion, Referate von Vertretern aus der Wirtschaft

Moodle: Link
  •  Seite  1  von  1