Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Geomatik Master Information
Vertiefungsfächer
Vertiefung in Ingenieurgeodäsie und Photogrammetrie
NummerTitelTypECTSUmfangDozierende
103-0738-00LGNSS LabW5 KP4GR. Hohensinn, G. Möller
KurzbeschreibungConsolidation of knowledge in satellite geodesy and its application to GNSS.
LernzielStudents know the technological background of GNSS. They are able to interpret and to qualify GNSS results and to carry out error estimations. Autonomous work on GNSS-related problems.
InhaltAutonomous development, planning, and carrying out of a small GNSS-project. As needed further satellite geodetic background will be given ( GNSS-positioning and navigation, satellite orbits, consolidated knowledge of GNSS, observation equations, principles of measurements, disturbances, practical operation)
SkriptNavigation, Alain Geiger, GGL-ETHZ
GNSS, Markus Rothacher, GGL-ETHZ
103-0838-00LGeomonitoring and GeosensorsW4 KP3GA. Wieser, M. Rothacher
KurzbeschreibungThis course provides an introduction to sensors, measurement techniques and analysis methods for geodetic monitoring of natural structures of local to regional scale like landslides, rock falls, volcanoes and tsunamis. Several case studies will highlight the application of the presented technologies.
LernzielUnderstanding the core challenges and proven approaches to monitoring of local and regional deformation; gaining an overview of established measurement and data processing techniques for monitoring geometric changes.
InhaltIntroduction to geomonitoring; sensors and measurement technologies: GNSS, TPS, TLS, GB-SAR, geosensor networks, geotechnical monitoring sensors; areal and point-wise deformation monitoring; congruency tests, network deformation analysis, sensitivity, regression and jump detection; estimation of strain tensor, block analysis; case studies.
SkriptThe lecture slides and further literature will be made available on the course webpage.
Voraussetzungen / BesonderesStudents should be familiar with geodetic networks, parameter estimation, GNSS and Engineering Geodesy. Students who have not taken the related courses of the ETH curriculum (or equivalent courses at another university) but want to take this course should contact the lecturers beforehand.
103-0128-00LRemote Sensing Lab Belegung eingeschränkt - Details anzeigen W4 KP2GE. Baltsavias
KurzbeschreibungThis course focuses mainly on photogrammetric processing and classification of optical and especially multispectral satellite images with practical work and own programming.
LernzielThe aims of this course are:
- the main aim is practical photogrammetric processing and classification of optical and especially multispectral satellite images using mostly own programming in MATLAB and less commercial software tools.
- some theoretical background will be provided, in addition to other ETHZ courses mentioned below (mainly given in Bachelor).
- further developing skills in report writing and presentations.
InhaltThe lecture builds on the courses Erdbeobachtung (Earth Observation), Photogrammetrie, Photogrammetrie II, Image Interpretation and Bildverarbeitung (Image Processing). The focus is on practical work and use of programs with optical satellite data.

The work is composed of two large labs. In the first, the main photogrammetric processing chain from preprocessing to visualisation is treated. In the second, the focus is on various multispectral classification techniques and their comparison.
SkriptTeaching material will be made available on the dedicated moodle page.
Voraussetzungen / BesonderesPersons without sufficient knowledge of remote sensing, photogrammetry and image processing, should first contact the lecturer and get permission to attend the course. Students should preferably have a basic knowledge of MATLAB programming or being willing to acquire it through self-study.
103-0848-00LIndustrial Metrology and Machine Vision Belegung eingeschränkt - Details anzeigen
Number of participants limited to 30.
W4 KP3GK. Schindler, A. Wieser
KurzbeschreibungThis course introduces contact and non-contact techniques for 3D coordinate, shape and motion determination as used for 3D inspection, dimensional control, reverse engineering, motion capture and similar industrial applications.
LernzielUnderstanding the physical basis of photographic sensors and imaging; familiarization with a broader view of image-based 3D geometry estimation beyond the classical photogrammetric approach; understanding the concepts of measurement traceability and uncertainty; acquiring an overview of general 3D image metrology including contact and non-contact techniques (coordinate measurement machines; optical tooling; laser-based high-precision instruments).
InhaltCCD and CMOS technology; structured light and active stereo; shading models, shape from shading and photometric stereo; shape from focus; laser interferometry, laser tracker, laser radar; contact and non-contact coordinate measurement machines; optical tooling; measurement traceability, measurement uncertainty, calibration of measurement systems; 3d surface representations; case studies.
SkriptLecture slides and further literature will be made available on the course webpage.
103-0767-00LEngineering Geodesy LabW4 KP3PA. Wieser, V. Frangez, Z. Gojcic
KurzbeschreibungErarbeitung von Lösungskonzepten für herausfordernde ingenieurgeodätische Aufgabenstellungen anhand praktischer Beispiele
LernzielDie Studierenden lernen, Lösungskonzepte für konkrete ingenieurgeodätische Aufgabenstellungen zu erarbeiten, zu beurteilen und praktisch umzusetzen. Sie erweitern Kenntnisse und Fertigkeiten, die sie im Zusammenhang mit Geodätischer Messtechnik, Ingenieurgeodäsie und Parameterschätzung erworben haben und stellen Querverbindungen zwischen diesen Fachbereichen her. Besonderes Augenmerk gilt der Auswahl geeigneter Sensoren, Instrumente und Messsysteme, der Auswahl geeigneter Mess- und Auswertemethoden, der durchgehenden Beurteilung technischer und nicht-technischer Qualitätsparameter, sowie der Dokumentation der Arbeiten.
InhaltEin geodätisches Netz zur hochpräzisen Koordinaten- und Richtungsübertragung von Pfeilern im Freien auf Pfeiler im Messlabor des Instituts für Geodäsie und Photogrammetrie wird geplant und optimiert. Dabei sind verschiedene Verfahren zur Lotung, zur Höhenübertragung und für die Azimutbestimmung im Messlabor einzusetzen. Die Messungen werden in Teamwork durchgeführt und ausgewertet. Abschliessend werden Netzentwurf, Beobachtungsplan und Ergebnisse kritisch beurteilt.
SkriptPublikationen und Unterlagen werden bei Bedarf und in Abhängigkeit von den gewählten Aufgaben zur Verfügung gestellt.
Literatur- Möser, M. et al. (2000): Handbuch Ingenieurgeodäsie, Grundlagen. Wichmann, Heidelberg.
- Heunecke et al. (2013): Handbuch Ingenieurgeodäsie, Auswertung geodätischer Überwachungsmessungen. 2. Aufl., Wichmann, Heidelberg.
- Schofield, W. and Breach, M. (2007): Engineering Surveying. 6th Edition, CRC, Boca Raton, USA.
- Caspary, W.F. (2000): Concepts of Network and Deformation Analysis. School of Geomatic Engineering, The University of New South Wales, Sydney, Australia.
Voraussetzungen / BesonderesDie erfolgreiche Teilnahme an dieser Lehrveranstaltung setzt Kenntnisse aus der Lehrveranstaltung "Engineering Geodesy" voraus. Studierende, die diese Lehrveranstaltung nicht bereits absolviert haben oder im selben Semester besuchen, können nur nach vorheriger Rücksprache mit den Dozierenden am Lab teilnehmen.

Soweit der Stundenplan der Teilnehmenden dies erlaubt, werden die 3-stündigen Einheiten teilweise zu ganztägigen Arbeiten zusammengefasst.
052-0524-00L360° - Reality to Virtuality (FS) Information Belegung eingeschränkt - Details anzeigen W2 KP2GK. Sander
KurzbeschreibungBasics of 3D-scanning of rooms and bodies, individual scan projects, 3D-visualizations and animations. Definition and realization of a project, working alone and in groups.
LernzielUnderstanding 3D-technologies, handling positive and negative spaces, handling hardware and software, processing 3D point clouds (registering scans, filtering, merging of data sets, precision, visualizations, animation), interpretation of the generated data.
Inhalt1. Introduction to 3D laser scanning (getting to know technologies, methods and context; carry out practical tests)
2. Project development within the group (idea, concept, target, intention, selection of methods & strategies)
3. Project implementation within the group (possible results, videos, pictures, prints, publications, web, blog, forum etc.)
4. Project presentation (exhibition incl. critiques, discussions)
  •  Seite  1  von  1