Suchergebnis: Katalogdaten im Herbstsemester 2019
Chemie- und Bioingenieurwissenschaften Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
151-0927-00L | Rate-Controlled Separations in Fine Chemistry | W+ | 6 KP | 3V + 1U | M. Mazzotti | |
Kurzbeschreibung | Die Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen. | |||||
Lernziel | Die Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen. | |||||
Inhalt | The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Liquid-liquid extraction; 2) Adsorption and chromatography; 3) Membrane processes; 4) Crystallization and precipitation. | |||||
Skript | Beilagen in der Vorlesung | |||||
Literatur | Bücher werden in der Vorlesung besprochen | |||||
Voraussetzungen / Besonderes | Besonderes: Teile der Vorlesung werden in Englisch gehalten. Voraussetzungen: Thermische Verfahrenstechnik I (151-0926-00) und Mathematische Methoden in den Chemieingenieurwissenschaften (151-0940-00) | |||||
529-0617-01L | Catalysis Engineering IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005. | W+ | 6 KP | 3G | J. Pérez-Ramírez, S. J. Mitchell | |
Kurzbeschreibung | The purpose of the "Catalysis Engineering" course is to provide students with tools that enable the optimal design of catalytic materials and reactor engineering concepts favoring more sustainable manufacturing processes within the chemical industry. | |||||
Lernziel | The course aims at illustrating, from conception to implementation, the design of sustainable catalytic processes by integration of the microlevel (catalyst), mesolevel (reactor), and macrolevel (process). The word "sustainable" implies intensified processes with an improved exploitation of raw materials, wider use of renewable feedstocks, reduction of energy consumption, and minimized environmental impact. By the use of modern case studies of industrial relevance, aspects of catalyst preparation and characterization, kinetics, mass and heat transport, and deactivation are discussed. Emphasis is put on understanding the interaction among these basic elements in order to select the optimal catalytic process. Since no textbooks covering this area are available at this time and the intention of this course is unique, the lectures will be based on own texts and journal articles. During the course, there will be specific topics addressed by industrial contributors. | |||||
Inhalt | The following general aspects: - Catalyst preparation and characterization - Kinetics - Mass and heat transport - Selectivity - Deactivation will be demonstrated for modern catalytic materials and processes of industrial relevance such as: - Chlorine recycling - N2O abatement - Chemoselective hydrogenations - Hierarchical zeolite catalysts - Syngas conversion - Biomass to chemicals and fuels | |||||
Skript | The course material is based on an own script, journal articles, and slides. | |||||
Voraussetzungen / Besonderes | It is assumed that students selecting this course are familiar with general concepts of catalysis, reactor design, and transport phenomena. |
Seite 1 von 1