Suchergebnis: Katalogdaten im Herbstsemester 2019
Bauingenieurwissenschaften Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
101-0117-00L | Theory of Structures III | O | 3 KP | 2G | B. Stojadinovic | |
Kurzbeschreibung | This course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting. | |||||
Lernziel | After passing this course students will be able to: 1. Explain the equilibrium of continuous structural elements. 2. Formulate mechanical models of continuous prismatic structural elements. 3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements. 4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading. 5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions. | |||||
Inhalt | This is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures. | |||||
Skript | Lecture notes based on the lecture presentations. The lectures are recorded and available at the the ETHZ video portal. | |||||
Literatur | Marti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014 Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993. | |||||
Voraussetzungen / Besonderes | Working knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel. | |||||
101-0127-00L | Advanced Structural Concrete ![]() | O | 3 KP | 2G | W. Kaufmann, J. Mata Falcón | |
Kurzbeschreibung | This course supplements the courses Structural Concrete I and II regarding the analysis and dimensioning of reinforced and prestressed concrete structures. It focuses on limit analysis methods for girders, discs, slabs and shells, particularly regarding their applicability to the safety assessment of existing structures and their computer-aided implementation. | |||||
Lernziel | Enhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to apply them to general problems, particularly regarding the structural safety assessment of existing structures; awareness of, and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software. | |||||
Inhalt | Fundamentals (structural analysis, theorems of limit analysis, applicability of limit analysis methods); shear walls and girders (stress fields and truss models, deformation capacity, membrane elements with yield conditions and load-deformation behaviour, computer-aided structural design); slabs (equilibrium solutions, yield conditions, shear and punching shear); fibre reinforced concrete (mechanical behaviour, applications); long term effects; fire behaviour. | |||||
Skript | Lecture notes see: http://www.concrete.ethz.ch | |||||
Literatur | Marti, P., “Theory of Structures: Fundamentals, Framed Structures, Plates and Shells”, first edition, Wiley Ernst & Sohn, Berlin, 2013, 696 pp. Nielsen, M.P., Hoang, L.C., “Limit Analysis and Concrete Plasticity”, third edition, CRC Press, Florida, 2010, 816 pp. | |||||
101-0137-00L | Stahlbau III | O | 3 KP | 2G | A. Taras, R. Bärtschi | |
Kurzbeschreibung | Vertiefen/Erweitern der theoretischen Grundlagen und konstruktiven Belange unter Einbezug ausführungstechn. und wirtschaftl. Aspekte, wie konstr. Gestaltung/Bemessung von Kranbahnen. Verbundbauteile, Teilverbund, Gebrauchstauglichkeit. Brand/Brandschutz, Feuerwiderstandberechnungen, Stabilitätsprobleme. Profilbleche und Kaltprofile. Oberflächenschutz, Qualitätssicherung und Preisbildung. | |||||
Lernziel | Vertiefen und Erweitern der theoretischen Grundlagen und konstruktiven Belange des Stahlbaus unter Einbezug ausführungstechnischer und wirtschaftlicher Aspekte. | |||||
Inhalt | Konstruktive Gestaltung und Bemessung von Kranbahnen. Verbundbauteile im Hochbau (Verbundträger, Verbundstützen, Verbundblechdecken), Teilverbund, Gebrauchstauglichkeit. Brandschutz: Brandschutzziele und -konzepte, die Einwirkung Brand, Feuerwiderstandberechnung von Stahl- und Verbundbauteilen. Ergänzungen zu Stabilitätsproblemen und nichtlinearer Berechnung. Profilbleche und Kaltprofile als Tragelemente, Konstruktion und Bemessung als Biege- resp. Schubelemente. Oberflächenschutz von Stahlbauteilen. Qualitätssicherung und Preisbildung. | |||||
Skript | Autographieblätter Folienkopien | |||||
Literatur | - Stahlbauhandbuch 1 und 2, Stahlbau-Verlags-GmbH, Köln - Stahlbaukalender 2000, Ernst + Sohn, Berlin, 1999 | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Stahlbau I und II | |||||
101-0187-00L | Structural Reliability and Risk Analysis ![]() | W | 3 KP | 2G | S. Marelli | |
Kurzbeschreibung | Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment. | |||||
Lernziel | The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field. | |||||
Inhalt | Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making. The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented. The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information. The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented. The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis. | |||||
Skript | Slides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester. | |||||
Literatur | Ang, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007. S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107. | |||||
Voraussetzungen / Besonderes | Basic course on probability theory and statistics | |||||
101-0157-01L | Structural Dynamics and Vibration Problems | W | 3 KP | 2G | M. Vassiliou, V. Ntertimanis | |
Kurzbeschreibung | Fundamentals of structural dynamics are presented. Computing the response of elastic single and multiple DOF structural systems subjected to harmonic, periodic, pulse, and impulse is discussed. Practical solutions to vibration problems in flexible structures under diverse excitations are developed. | |||||
Lernziel | After successful completion of this course the students will be able to: 1. Explain the dynamic equilibrium of structures under dynamic loading. 2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems. 3. Model structural systems using single-degree-of-freedom and multiple-degree-of-freedom models. 4. Compute the dynamic response of structural system to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods. 5. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading. | |||||
Inhalt | This is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, and impulse excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by humans, machinery, wind or explosions are presented. | |||||
Skript | The class will be taught mainly on the blackboard. Accompanying electronic material will be uploaded to ILIAS and available through myStudies. All the material can be found in Anil Chopra's comprehensive textbook given in the literature below. | |||||
Literatur | Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 (Global Edition), ISBN-10: 9780273774242 Vibration Problems in Structures: Practical Guidelines, Hugo Bachmann et al., Birkhäuser, Basel, 1995 Weber B., Tragwerksdynamik. http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=lehr&nr=76 .ETH Zürich, 2002. | |||||
Voraussetzungen / Besonderes | Knowledge of the fundamentals in structural analysis, and in structural design of reinforced concrete, steel and/or wood structures is mandatory. Working knowledge of matrix algebra and ordinary differential equations is required. Familiarity with Matlab and with structural analysis computer software is desirable. | |||||
151-8015-00L | Moisture Transport in Porous Media ![]() | W | 3 KP | 2G | J. Carmeliet, O. Dorostkar, A. Kubilay, X. Zhou | |
Kurzbeschreibung | Moisture transport and related degradation processes in building and civil engineering materials and structures; concepts of hygrothermal damage analysis and local urban climate prediction; experimental determination of moisture transport properties. | |||||
Lernziel | - Basic knowledge of moisture transport and related degradation processes in building and civil engineering materials and structures - Knowledge of experimental determination of moisture transport properties analysis - Application of knowledge to hygrothermal damage cases and local urban climate | |||||
Inhalt | 1. Introduction Moisture damage: problem statement Durability 2. Moisture Transport Description of moisture transport Determination of moisture transport properties Liquid transport in cracked media 3. Hygrothermal analysis: case studies Heat and mass transport in street canyon, urban microclimate and mitigation measures Moisture durability analysis of inside insulation: mould growth, wood rot and frost damage | |||||
Skript | Handouts, supporting material and exercises are provided online (http://www.carmeliet.ethz.ch/). | |||||
Literatur | All material is provided online (http://www.carmeliet.ethz.ch/) | |||||
101-0167-01L | Fibre Composite Materials in Structural Engineering | W | 3 KP | 2G | M. Motavalli | |
Kurzbeschreibung | 1) Lamina and Laminate Theory 2) FRP Manufacturing and Testing Methods 3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, and metallic Structures 4) FRP Reinforced Concrete, All FRP Structures 5) Measurement Techniques and Structural Health Monitoring | |||||
Lernziel | At the end of the course, you shall be able to 1) Design advanced FRP composites for your structures, 2) To consult owners and clients with necessray testing and SHM techniques for FRP structures, 3) Continue your education as a phd student in this field. | |||||
Inhalt | Fibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic and timber will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams and columns, apply the FRP by themselves, and finally test their samples up to failure. | |||||
Skript | Power Point Presentations available online at www.empa.ch/abt303 | |||||
Literatur | 1) Eckold G., Design and Manufacture of Composite Structures, ISBN 1 85573 051 0, Woodhead Publishing Limited, Cambridge, England, 1994 2) Lawrence C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, ISBN-13: 978-0471-68126-7 3) fib bulletin 19, Externally applied FRP reinforcement for concrete structures, technical report, 2019 4) SIA166 (2004) Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur- und Architektenverein SIA. | |||||
Voraussetzungen / Besonderes | 1) Laboratory Tours and Demonstrations: Empa Structural Engineering Laboratory including FRP Composites, Shape Memory Alloys, Timber Elements, Large Scale Testing of Structural Components 2) Working with Composite Materials in the Laboratory (application, testing, etc) | |||||
101-0637-01L | Holzbau I Hinweis: Studierende der Bauingenieurwissenschaften dürfen diese Lerneinheit nur als Jahreskurs Holzbau I+II belegen. | W | 3 KP | 2G | A. Frangi, I. Burgert, G. Fink, R. Steiger | |
Kurzbeschreibung | Entwurf, Konstruktion und Bemessung von mehrgeschossigen Holzbauten sowie Dach- und Hallenbauten. | |||||
Lernziel | Verständnis und Anwendung der theoretischen Grundlagen und der konstruktiven Belange des Ingenieur-Holzbaus. Erkennen der holzspezifischen Besonderheiten, insbesondere der Anisotropie, der Schwind- und Quellverformungen und der Langzeiteinflüsse, sowie deren konstruktive und bemessungstechnische Bewältigung. Entwurf, Konstruktion und Bemessung von mehrgeschossigen Holzbauten sowie Dach- und Hallenbauten. | |||||
Inhalt | Anwendungsgebiete des Holzbaus (materialspezifische Merkmale und deren Auswirkung auf die Konstruktionsweise); Holz als Baustoff (Aufbau des Holzes, Sortierung, physikalische und mechanische Eigenschaften von Holz und Holzwerkstoffen); Dauerhaftigkeit und konstruktiver Holzschutz; Bemessungsgrundlagen und Verbindungen (Verklebung, Nägel, Dübel, Bolzen, Schrauben); Bauteile und wichtigste ebene und räumliche Tragwerke (Berechnung und Bemessung unter Beachtung nachgiebiger Verbindungen); besondere konstruktive Belange von mehrgeschossigen Holzbauten sowie Dach- und Hallenbauten. | |||||
Skript | Autographie Holzbau Folienkopien | |||||
Literatur | Holzbautabellen HBT 1, Lignum (2012) Norm SIA 265 (2012) Norm SIA 265/1 (2018) | |||||
052-0609-00L | Energie- und Klimasysteme I ![]() | W | 2 KP | 2G | A. Schlüter | |
Kurzbeschreibung | Im ersten Semester des Jahreskurses werden die wesentlichen physikalischen Prinzipien, Konzepte, Komponenten und Systeme für die effiziente und nachhaltige Versorgung von Gebäuden mit Wärme, Kälte und Luft behandelt. Abhängigkeiten und Interaktionen zwischen technischen Systemen und dem architektonischen und städtebaulichen Entwerfen werden aufgezeigt. | |||||
Lernziel | Ziel der Vorlesung ist die Kenntnis der physikalischen Grundlagen, relevanten Konzepte und technischen Systeme für die effiziente und nachhaltige Versorgung von Gebäuden bzw. Distrikten mit Wärme, Kälte und Frischluft. Mittels Erlernen überschlägiger Berechnungsmethoden wird die Ermittlung relevanter Grössen und die Identifikation wichtiger Parameter geübt. Auf diese Weise können passende Ansätze für den eigenen Entwurf ausgewählt, qualitativ und quantitativ bewertet und integriert werden. | |||||
Inhalt | 1. Einführung und Überblick 2. Heizen und Kühlen 3. Lüftung | |||||
Skript | Die Folien der Vorlesung dienen als Skript und sind als download erhältlich. | |||||
Literatur | Eine Liste weiterführender Literatur ist am Lehrstuhl erhältlich. |
Seite 1 von 1