Suchergebnis: Katalogdaten im Herbstsemester 2019
Computational Biology and Bioinformatics Master More informations at: https://www.cbb.ethz.ch/ | ||||||
Master-Studium (Studienreglement 2011) | ||||||
Vertiefungsfächer und Methoden der Informatik | ||||||
Methoden der Informatik | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
252-0057-00L | Theoretische Informatik | W | 7 KP | 4V + 2U | J. Hromkovic, H.‑J. Böckenhauer | |
Kurzbeschreibung | Konzepte zur Beantwortung grundlegender Fragen wie: a) Was ist völlig automatisiert machbar (algorithmisch lösbar) b) Wie kann man die Schwierigkeit von Aufgaben (Problemen) messen? c) Was ist Zufall und wie kann er nützlich sein? d) Was ist Nichtdeterminisus und welche Rolle spielt er in der Informatik? e) Wie kann man unendliche Objekte durch Automaten und Grammatiken endlich darstellen? | |||||
Lernziel | Vermittlung der grundlegenden Konzepte der Informatik in ihrer geschichtlichen Entwicklung | |||||
Inhalt | Die Veranstaltung ist eine Einführung in die Theoretische Informatik, die die grundlegenden Konzepte und Methoden der Informatik in ihrem geschichtlichen Zusammenhang vorstellt. Wir präsentieren Informatik als eine interdisziplinäre Wissenschaft, die auf einer Seite die Grenzen zwischen Möglichem und Unmöglichem und die quantitativen Gesetze der Informationsverarbeitung erforscht und auf der anderen Seite Systeme entwirft, analysiert, verifiziert und implementiert. Die Hauptthemen der Vorlesung sind: - Alphabete, Wörter, Sprachen, Messung der Informationsgehalte von Wörtern, Darstellung von algorithmischen Aufgaben - endliche Automaten, reguläre und kontextfreie Grammatiken - Turingmaschinen und Berechenbarkeit - Komplexitätstheorie und NP-Vollständigkeit - Algorithmenentwurf für schwere Probleme | |||||
Skript | Die Vorlesung ist detailliert durch das Lehrbuch "Theoretische Informatik" bedeckt. | |||||
Literatur | Basisliteratur: 1. J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014. 2. J. Hromkovic: Theoretical Computer Science. Springer 2004. Weiterführende Literatur: 3. M. Sipser: Introduction to the Theory of Computation, PWS Publ. Comp.1997 4. J.E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson 2002. 5. I. Wegener: Theoretische Informatik. Teubner Weitere Übungen und Beispiele: 6. A. Asteroth, Ch. Baier: Theoretische Informatik | |||||
Voraussetzungen / Besonderes | Während des Semesters werden zwei freiwillige Probeklausuren gestellt. | |||||
252-0535-00L | Advanced Machine Learning | W | 8 KP | 3V + 2U + 2A | J. M. Buhmann | |
Kurzbeschreibung | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||
Lernziel | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||
Inhalt | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||
Skript | No lecture notes, but slides will be made available on the course webpage. | |||||
Literatur | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||
Voraussetzungen / Besonderes | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | |||||
401-0663-00L | Numerical Methods for CSE | W | 8 KP | 4V + 2U + 1P | R. Hiptmair | |
Kurzbeschreibung | The course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++. | |||||
Lernziel | * Knowledge of the fundamental algorithms in numerical mathematics * Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms * Ability to choose the appropriate numerical method for concrete problems * Ability to interpret numerical results * Ability to implement numerical algorithms afficiently | |||||
Inhalt | * Computing with Matrices and Vectors * Direct Methods for linear systems of equations * Least Squares Techniques * Data Interpolation and Fitting [ Filtering Algorithms, optional] * Approximation of Functions * Numerical Quadrature * Iterative Methods for non-linear systems of equations * Single Step Methods for ODEs * Stiff Integrators | |||||
Skript | Lecture materials (PDF documents and codes) will be made available to the participants through the course web page, whose address will be announced in the beginning of the course. | |||||
Literatur | U. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011. A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000. W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006. W. Gander, M.J. Gander, and F. Kwok "Scientific Computing", Springer 2014. M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002 P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002 | |||||
Voraussetzungen / Besonderes | The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves. |
- Seite 1 von 1