Suchergebnis: Katalogdaten im Herbstsemester 2019

Physik Master Information
Wahlfächer
Allgemeine Wahlfächer
Den Studierenden steht das gesamte Lehrangebot der ETH Zürich zur individuellen Auswahl offen - mit folgenden Einschränkungen: Lehrveranstaltungen aus den ersten beiden Studienjahren eines Bachelor-Curriculums der ETH Zürich sowie Lehrveranstaltungen aus GESS "Wissenschaft im Kontext" sind nicht als allgemeines Wahlfach anrechenbar.
Die Dozierenden folgender Lehrveranstaltungen empfehlen sie ausdrücklich den Studierenden der Physik. (Für die Lehrveranstaltungen in dieser Liste können Sie die Kategorie "Allgemeine Wahlfächer" direkt in myStudies zuordnen. Für die Kategoriezuordnung anderer zugelassener Lehrveranstaltungen lassen Sie bei der Prüfungsanmeldung "keine Kategorie" ausgewählt und wenden Sie sich nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.phys.ethz.ch/de/studium/studiensekretariat.html).)
NummerTitelTypECTSUmfangDozierende
529-0433-01LAdvanced Physical Chemistry: Statistical Thermodynamics
IMPORTANT NOTICE for Chemistry students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in Chemistry regulations 2005.
W6 KP3GG. Jeschke, J. Richardson
KurzbeschreibungIntroduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.
LernzielIntroduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.
InhaltBasics of statistical mechanics and thermodynamics of classical and quantum systems. Concept of ensembles, microcanonical and canonical ensembles, ergodic theorem. Molecular and canonical partition functions and their connection with classical thermodynamics. Quantum statistics. Translational, rotational, vibrational, electronic and nuclear spin partition functions of gases. Determination of the equilibrium constants of gas phase reactions. Description of ideal gases and ideal crystals. Lattice models, mixing entropy of polymers, and entropic elasticity.
SkriptSee homepage of the lecture.
LiteraturSee homepage of the lecture.
Voraussetzungen / BesonderesChemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus)
151-0163-00LNuclear Energy ConversionW4 KP2V + 1UH.‑M. Prasser
KurzbeschreibungPhysikalische Grundlagen der Kernspaltung und der Kettenreaktion, thermische Auslegung, Aufbau, Funktion, und Betrieb von Kernreaktoren und Kernkraftwerken, Leichtwasserreaktoren und andere Reaktortypen, Konversion und Brüten
LernzielDie Studierenden erhalten einen Überblick über die Energieerzeugung in Kernkraftwerken, über Aufbau und Funktion der wichtigsten Reaktortypen sowie über den Kernbrennstoffkreislauf mit Schwerpunkt auf Leichtwasserreaktoren. Sie erhalten die mathematisch-physikalischen Grundlagen für quantitave Abschätzungen zu den wichtigsten Aspekten der Auslegung, des dynamischen Verhaltens und der Stoff- und Energieströme.
InhaltNeutronenphysikalische Grundlagen von Kernspaltung und Kettenreaktion. Thermodynamische Grundlagen von Kernreaktoren. Auslegung des Reaktorkerns. Einführung in das dynamische Verhalten von Kernreaktoren. Überblick über die wichtigsten Reaktortypen, Unterschied zwischen thermischen Reaktoren und Brutreaktoren. Aufbau und Betrieb von Kernkraftwerken mit Druck- und Siedewasserreaktoren, Rolle und Funktion der wichtigsten Sicherheitssysteme, Besonderheiten des Energieumwandlungsprozesses. Entwicklungstendenzen in der Reaktortechnik.
SkriptVorlesungsunterlagen werden verteilt. Vielfältiges Angebot an zusätzlicher Literatur und Informationen unter Link
LiteraturS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V.

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier
151-0103-00LFluiddynamik IIW3 KP2V + 1UP. Jenny
KurzbeschreibungEbene Potentialströmungen: Stromfunktion und Potential, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
LernzielErweiterung der Grundlagen der Fluiddynamik.
Grundbegriffe, Phänomene und Gesetzmässigkeiten von drehungsfreien, drehungsbehafteten und eindimensionalen kompressiblen Strömungen vermitteln.
InhaltEbene Potentialströmungen: Stromfunktion und Potential, komplexe Darstellung, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeldynamik und Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
Skriptja
(Siehe auch untenstehende Information betreffend der Literatur.)
LiteraturP.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Voraussetzungen / BesonderesAnalysis I/II, Fluiddynamik I, Grundbegriffe der Thermodynamik (Thermodynamik I).

Für die Formulierung der Grundlagen der Fluiddynamik werden unabdingbar Begriffe und Ergebnisse aus der Mathematik benötigt. Erfahrungsgemäss haben einige Studierende damit Schwierigkeiten.
Es wird daher dringend empfohlen, insbesondere den Stoff über
- elementare Funktionen (wie sin, cos, tan, exp, deren Umkehrfunktionen, Ableitungen und Integrale) sowie über
- Vektoranalysis (Gradient, Divergenz, Rotation, Linienintegral ("Arbeit"), Integralsätze von Gauss und von Stokes, Potentialfelder als Lösungen der Laplace-Gleichung) zu wiederholen. Ferner wird der Umgang mit
- komplexen Zahlen und Funktionen (siehe Anhang des Skripts Analysis I/II Teil C und Zusammenfassung im Anhang C des Skripts Fluiddynamik) benötigt.

Literatur z.B.: U. Stammbach: Analysis I/II, Skript Teile A, B und C.
151-0532-00LNonlinear Dynamics and Chaos I Information W4 KP2V + 2UG. Haller
KurzbeschreibungBasic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
LernzielThis course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
Inhalt(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance
SkriptThe class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.
Voraussetzungen / Besonderes- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
151-0213-00LFluid Dynamics with the Lattice Boltzmann Method
Findet dieses Semester nicht statt.
W4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0105-00LQuantitative Flow VisualizationW4 KP3GT. Rösgen
KurzbeschreibungThe course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises.
LernzielIntroduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization.
Understanding of hardware and software requirements and solutions.
Development of basic programming skills for (generic) imaging applications.
InhaltFundamentals of optics, flow visualization and electronic image acquisition.
Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms).
Image Velocimetry (tracking, pattern matching, Doppler imaging).
Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography).
Laser induced fluorescence.
(Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping.
Wall shear and heat transfer measurements.
Pattern recognition and feature extraction, proper orthogonal decomposition.
SkriptHandouts will be made available.
Voraussetzungen / BesonderesPrerequisites: Fluiddynamics I, Numerical Mathematics, programming skills.
Language: German on request.
151-0911-00LIntroduction to Plasmonics
Findet dieses Semester nicht statt.
W4 KP2V + 1UD. J. Norris
KurzbeschreibungThis course provides fundamental knowledge of surface plasmon polaritons and discusses their applications in plasmonics.
LernzielElectromagnetic oscillations known as surface plasmon polaritons have many unique properties that are useful across a broad set of applications in biology, chemistry, physics, and optics. The field of plasmonics has arisen to understand the behavior of surface plasmon polaritons and to develop applications in areas such as catalysis, imaging, photovoltaics, and sensing. In particular, metallic nanoparticles and patterned metallic interfaces have been developed to utilize plasmonic resonances. The aim of this course is to provide the basic knowledge to understand and apply the principles of plasmonics. The course will strive to be approachable to students from a diverse set of science and engineering backgrounds.
InhaltFundamentals of Plasmonics
- Basic electromagnetic theory
- Optical properties of metals
- Surface plasmon polaritons on surfaces
- Surface plasmon polariton propagation
- Localized surface plasmons

Applications of Plasmonics
- Waveguides
- Extraordinary optical transmission
- Enhanced spectroscopy
- Sensing
- Metamaterials
SkriptClass notes and handouts
LiteraturS. A. Maier, Plasmonics: Fundamentals and Applications, 2007, Springer
Voraussetzungen / BesonderesPhysics I, Physics II
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 KP4GP. Koumoutsakos
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
LernzielWith manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.
Inhalt1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods
Skripthttps://www.cse-lab.ethz.ch/teaching/hpcse-i_hs19/
Class notes, handouts
Literatur• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes
Voraussetzungen / BesonderesStudents should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.
227-1047-00LConsciousness: From Philosophy to Neuroscience (University of Zurich) Information
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: INI410

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html
W3 KP2VD. Kiper
KurzbeschreibungThis seminar reviews the philosophical and phenomenological as well as the neurobiological aspects of consciousness. The subjective features of consciousness are explored, and modern research into its neural substrate, particularly in the visual domain, is explained. Emphasis is placed on students developing their own thinking through a discussion-centered course structure.
LernzielThe course's goal is to give an overview of the contemporary state of consciousness research, with emphasis on the contributions brought by modern cognitive neuroscience. We aim to clarify concepts, explain their philosophical and scientific backgrounds, and to present experimental protocols that shed light on on a variety of consciousness related issues.
InhaltThe course includes discussions of scientific as well as philosophical articles. We review current schools of thought, models of consciousness, and proposals for the neural correlate of consciousness (NCC).
SkriptNone
LiteraturWe display articles pertaining to the issues we cover in the class on the course's webpage.
Voraussetzungen / BesonderesSince we are all experts on consciousness, we expect active participation and discussions!
151-0621-00LMicrosystems I: Process Technology and IntegrationW6 KP3V + 3UM. Haluska, C. Hierold
KurzbeschreibungDie Stundenten werden in die Grundlagen der Mikrosystemtechnik, der Halbleiterphysik und der Halbleiterprozesstechnologie eingeführt und erfahren, wie die Herstellung von Mikrosystemen in einer Serie von genau definierten Prozessschritten erfolgt (Gesamtprozess und Prozessablauf).
LernzielDie Stundenten sind mit den Grundlagen der Mikrosystemtechnik und der Prozesstechnologie für Halbleiter vertraut und verstehen die Herstellung von Mikrosystemen durch die Kombination von Einzelprozesschritten ( = Gesamtprozess oder Prozessablauf).
Inhalt- Einführung in die Mikrosystemtechnik (MST) und in mikroelektromechanische Systeme (MEMS)
- Grundlegende Siliziumtechnologie: thermische Oxidation, Fotolithografie und Ätztechnik, Diffusion und Ionenimplantation, Dünnschichttechnik.
- Besondere Mikrosystemtechnologien: Volumen- und Oberflächenmikromechanik, Trocken- und Nassätzen, isotropisches und anisotropisches Ätzen, Herstellung von Balken und Membranen, Waferbonden, mechanische Eigenschaften von Dünnschichten.
Die Anwendung ausgewählter Technologien wird anhand von Fallstudien nachgewiesen.
SkriptHandouts (online erhältlich)
Literatur- S.M. Sze: Semiconductor Devices, Physics and Technology
- W. Menz, J. Mohr, O.Paul: Microsystem Technology
- Hong Xiao: Introduction to Semiconductor Manufacturing Technology
- M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed.
- T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications
Voraussetzungen / BesonderesVoraussetzung: Physik I und II
227-0385-10LBiomedical ImagingW6 KP5GS. Kozerke, K. P. Prüssmann
KurzbeschreibungIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
LernzielTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Inhalt- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
SkriptLecture notes and handouts
LiteraturWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Voraussetzungen / BesonderesAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
227-0386-00LBiomedical EngineeringW4 KP3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. P. Wolf, M. Zenobi-Wong
KurzbeschreibungIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
LernzielIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
InhaltIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
SkriptIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://lbb.ethz.ch/education/biomedical-engineering.html
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
227-0157-00LSemiconductor Devices: Physical Bases and Simulation Information W4 KP3GA. Schenk
KurzbeschreibungThe course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. Necessary basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. Computer simulations of the most important devices and of interesting physical effects supplement the lectures.
LernzielThe course aims at the understanding of the principle physics of modern semiconductor devices, of the foundations in the physical modeling of transport and its numerical simulation. During the course also basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided.
InhaltThe main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley-Read-Hall statistics, Auger recombination), impact ionization, metal-semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions.
The exercises are focussed on the theory and the basic understanding of the operation of special devices, as single-electron transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Synopsys). This enables to understand the physical effects by means of computer experiments.
SkriptThe script (in book style) can be downloaded from: https://iis-students.ee.ethz.ch/lectures/
LiteraturThe script (in book style) is sufficient. Further reading will be recommended in the lecture.
Voraussetzungen / BesonderesQualifications: Physics I+II, Semiconductor devices (4. semester).
227-0663-00LNano-Optics Information
Findet dieses Semester nicht statt.
W6 KP2V + 2UM. Frimmer
KurzbeschreibungNano-Optics is the study of optical phenomena and techniques on the nanometer scale. It is an emerging field of study motivated by the rapid advance of nanoscience and technology. It embraces topics such as plasmonics, optical antennas, optical trapping and manipulation, and high-resolution imaging and spectroscopy.
LernzielUnderstanding concepts of light localization and light-matter interactions on the nanoscale.
InhaltStarting with an angular spectrum representation of optical fields the role of inhomogeneous evanescent fields is discussed. Among the topics are: theory of strongly focused light, point spread functions, resolution criteria, confocal microscopy, and near-field optical microscopy. Further topics are: optical interactions between nanoparticles, atomic decay rates in inhomogeneous environments, single molecule spectroscopy, light forces and optical trapping, photonic bandgap materials, and theoretical methods in nano-optics.
Voraussetzungen / Besonderes- Electrodynamics (or equivalent)
- Physics I+II
227-0301-00LOptical Communication FundamentalsW6 KP2V + 1U + 1PJ. Leuthold
KurzbeschreibungThe path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.
LernzielAn in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.
Inhalt* Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.

* Chapter 2: The Transmitter: Components of a transmitter, Lasers, The spectrum of a signal, Optical modulators, Modulation formats.

* Chapter 3: The Optical Fiber Channel: Geometrical optics, The wave equations in a fiber, Fiber modes, Fiber propagation, Fiber losses, Nonlinear effects in a fiber.

* Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.

* Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection teqchniques, Error correction coding.

* Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.

* Chapter 7: Optical Amplifiers : Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.
SkriptLecture notes are handed out.
LiteraturGovind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010
Voraussetzungen / BesonderesFundamentals of Electromagnetic Fields & Bachelor Lectures on Physics.
227-0116-00LVLSI I: From Architectures to VLSI Circuits and FPGAs Information W6 KP5GF. K. Gürkaynak, L. Benini
KurzbeschreibungThis first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.
LernzielUnderstand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.
InhaltThis course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.
SkriptTextbook and all further documents in English.
LiteraturH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Voraussetzungen / BesonderesPrerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
https://iis-students.ee.ethz.ch/lectures/vlsi-i/
227-0148-00LVLSI III: Test and Fabrication of VLSI Circuits Information W6 KP4GF. K. Gürkaynak, L. Benini
KurzbeschreibungIn this course, we will cover how modern microchips are fabricated, and we will focus on methods and tools to uncover fabrication defects, if any, in these microchips. As part of the exercises, students will get to work on an industrial 1 million dollar automated test equipment.
LernzielLearn about modern IC manufacturing methodologies, understand the problem of IC testing. Cover the basic methods, algorithms and techniques to test circuits in an efficient way. Learn about practical aspects of IC testing and apply what you learn in class using a state-of-the art tester.
InhaltIn this course we will deal with modern integrated circuit (IC) manufacturing technology and cover topics such as:
- Today's nanometer CMOS fabrication processes (HKMG).
- Optical and post optical Photolithography.
- Potential alternatives to CMOS technology and MOSFET devices.
- Evolution paths for design methodology.
- Industrial roadmaps for the future evolution of semiconductor technology (ITRS).

If you want to earn money by selling ICs, you will have to deliver a product that will function properly with a very large probability. The main emphasis of the lecture will be discussing how this can be achieved. We will discuss fault models and practical techniques to improve testability of VLSI circuits. At the IIS we have a state-of-the-art automated test equipment (Advantest SoC V93000) that we will make available for in class exercises and projects. At the end of the lecture you will be able to design state-of-the art digital integrated circuits such as to make them testable and to use automatic test equipment (ATE) to carry out the actual testing.

During the first weeks of the course there will be weekly practical exercises where you will work in groups of two. For the last 5 weeks of the class students will be able to choose a class project that can be:
- The test of their own chip developed during a previous semester thesis
- Developing new setups and measurement methods in C++ on the tester
- Helping to debug problems encountered in previous microchips by IIS.

Half of the oral exam will consist of a short presentation on this class project.
SkriptMain course book: "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits" by Michael L. Bushnell and Vishwani D. Agrawal, Springer, 2004. This book is available online within ETH through
http://link.springer.com/book/10.1007%2Fb117406
Voraussetzungen / BesonderesAlthough this is the third part in a series of lectures on VLSI design, you can follow this course even if you have not visited VLSI I and VLSI II lectures. An interest in integrated circuit design, and basic digital circuit knowledge is required though.

Course website:
https://iis-students.ee.ethz.ch/lectures/vlsi-iii/
151-0620-00LEmbedded MEMS LabW5 KP3PC. Hierold, S. Blunier, M. Haluska
KurzbeschreibungPraktischer Kurs: Die Teilnehmer lernen die Einzelprozessschritte zur Herstellung eines MEMS (Micro Electro Mechanical System) kennen und führen diese in Reinräumen selbständig durch. Sie erlernen ausserdem die Anforderungen für die Arbeit in Reinräumen. Die Prozessierung und Charakterisierung wird in einem Abschlussbericht dokumentiert und ausgewertet. Beschränkte Platzzahl
LernzielDie Teilnehmer lernen die Einzelprozessschritte zur Herstellung eines MEMS (Micro Electro Mechanical System) kennen. Sie führen diese in Laboren und Reinräumen selbständig durch. Die Teilnehmer erlernen ausserdem die speziellen Anforderungen (Sauberkeit, Sicherheit, Umgang mit Geräten und gefährlichen Chemikalien) für die Arbeit in Reinräumen und Laboren. Die gesamte Herstellung, Prozessierung und Charakterisierung wird in einem Abschlussbericht dokumentiert und ausgewertet.
InhaltUnter Anleitung werden die Einzelprozessschritte der Mikrosystem- und Siliziumprozesstechnik zur Herstellung eines Beschleunigungssensors durchgeführt:
-Photolithographie, Trockenätzen, Nassätzen, Opferschichtätzung, diverse Reinigungsprozesse
- Aufbau- und Verbindungstechnik am Beispiel der elektrischen Verbindung von MEMS und elektronischer Schaltung in einem Gehäuse
- Funktionstest und Charakterisierung des MEMS
- Schriftliche Dokumentation und Auswertung der gesamten Herstellung, Prozessierung und Charakterisierung
SkriptEin Skript wird an der ersten Veranstaltung verteilt.
LiteraturDas Skript ist ausreichend für die erfolgreiche Teilnahme des Praktikums.
Voraussetzungen / BesonderesDie Teilnahme an allen hier aufgeführten Veranstaltungen ist Pflicht.
Beschränkte Platzzahl, sehen Sie den englischen Text:

Participating students are required to provide proof that they have personal accident insurance prior to the start of the laboratory classes of the course.

For safety and efficiency reasons the number of participating students is limited. We regret to restrict access to this course by the following rules:

Priority 1: master students of the master's program in "Micro and Nanosystems"

Priority 2: master students of the master's program in "Mechanical Engineering" with a specialization in Microsystems and Nanoscale Engineering (MAVT-tutors Profs Daraio, Dual, Hierold, Koumoutsakos, Nelson, Norris, Poulikakos, Pratsinis, Stemmer), who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 3: master students, who attended the bachelor course "151-0621-00L Microsystems Technology" successfully.

Priority 4: all other students (PhD, bachelor, master) with a background in silicon or microsystems process technology.

If there are more students in one of these priority groups than places available, we will decide by (in following order) best achieved grade from 151-0621-00L Microsystems Technology, registration to this practicum at previous semester, and by drawing lots.
Students will be notified at the first lecture of the course (introductory lecture) as to whether they are able to participate.

The course is offered in autumn and spring semester.
529-0443-01LAdvanced Magnetic Resonance Information
IMPORTANT NOTICE for Chemistry students: There are two different version of this course for the two regulations (2005/2018), please make sure you register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in Chemistry regulations 2005.
W6 KP3GB. H. Meier, M. Ernst, T. Wiegand
KurzbeschreibungThe course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This year, the lecture will introduce and discuss the concepts and applications of Biological Magnetic Resonance in the solid-state.
LernzielThe aim of the course is to the students with the concepts of high-resolution solid-state NMR as a method to describe structure and dynamics of biomolecules and their complexes. During the hands-on part of the lecture course, actual spectra will be analysed.
InhaltTopics covered:

1) Basics of Protein Structure
2) A Summary of Basic NMR
3) Anisotropic Interactions in NMR and their Information Contents
4) MAS, Decoupling and Recoupling
5) Proton Detection vs. Carbon Detection
6) Assignment Strategies
7) Hands-on: The Assignment of HET-s
8) Structure Calculation Concepts
9) Hands-on: The structure of HET-s
10) Characterising the Molecular Dynamics
11) Hands-on: the Dynamics of HET-s
12) What are the limits?

Prerequisite: A basic knowledge of NMR, e.g. as covered in the Lecture Physical Chemistry IV, or the book by Malcolm Levitt.
SkriptA script which covers the topics will be distributed in the lecture and will be accessible through the web page http://www.ssnmr.ethz.ch/education/
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle