# Suchergebnis: Katalogdaten im Herbstsemester 2019

Data Science Master | ||||||

Kernfächer | ||||||

Datenanalyse | ||||||

Information and Learning | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|

252-0535-00L | Advanced Machine Learning | W | 8 KP | 3V + 2U + 2A | J. M. Buhmann | |

Kurzbeschreibung | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||

Lernziel | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||

Inhalt | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||

Skript | No lecture notes, but slides will be made available on the course webpage. | |||||

Literatur | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||

Voraussetzungen / Besonderes | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | |||||

227-0423-00L | Neural Network Theory | W | 4 KP | 2V + 1U | H. Bölcskei, E. Riegler | |

Kurzbeschreibung | The class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, reproducing Kernel Hilbert spaces, support vector machines, fundamental limits of deep neural network learning, dimension measures, feature extraction with scattering networks | |||||

Lernziel | After attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks. | |||||

Inhalt | 1. Universal approximation with single- and multi-layer networks 2. Geometry of decision surfaces 3. Separating capacity of nonlinear decision surfaces 4. Generalization 5. Reproducing Kernel Hilbert Spaces, support vector machines 6. Deep neural network approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, covering numbers, fundamental limits of deep neural network learning 7. Learning of real-valued functions: Pseudo-dimension, fat-shattering dimension, Vapnik-Chervonenkis dimension 8. Scattering networks | |||||

Skript | Detailed lecture notes will be provided as we go along. | |||||

Voraussetzungen / Besonderes | This course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular. | |||||

Statistics | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

401-3621-00L | Fundamentals of Mathematical Statistics | W | 10 KP | 4V + 1U | S. van de Geer | |

Kurzbeschreibung | The course covers the basics of inferential statistics. | |||||

Lernziel | ||||||

Datenmanagement und Datenverarbeitung | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

263-3010-00L | Big Data | W | 8 KP | 3V + 2U + 2A | G. Fourny | |

Kurzbeschreibung | The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations. | |||||

Lernziel | This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm". Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small. The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof. After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently. | |||||

Inhalt | This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem. No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form. - physical storage: distributed file systems (HDFS), object storage(S3), key-value stores - logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP) - data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro) - data shapes and models (tables, trees, graphs, cubes) - type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +) - an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX) - the most important query paradigms (selection, projection, joining, grouping, ordering, windowing) - paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark) - resource management (YARN) - what a data center is made of and why it matters (racks, nodes, ...) - underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j) - optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing) - applications. Large scale analytics and machine learning are outside of the scope of this course. | |||||

Literatur | Papers from scientific conferences and journals. References will be given as part of the course material during the semester. | |||||

Voraussetzungen / Besonderes | This course, in the autumn semester, is only intended for: - Computer Science students - Data Science students - CBB students with a Computer Science background Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added. For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you and offered in Spring 2020: - "Information Systems for Engineers" (SQL, relational databases) - "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists). There is no hard dependency, so you can either attend both in the same semester, or one after the other. | |||||

263-4500-10L | Advanced Algorithms (with Project) Only for Data Science MSc. | W | 8 KP | 2V + 2U + 2P + 1A | M. Ghaffari, A. Krause | |

Kurzbeschreibung | This is an advanced course on the design and analysis of algorithms, covering a range of topics and techniques not studied in typical introductory courses on algorithms. | |||||

Lernziel | This course is intended to familiarize students with (some of) the main tools and techniques developed over the last 15-20 years in algorithm design, which are by now among the key ingredients used in developing efficient algorithms. | |||||

Inhalt | the lectures will cover a range of topics, including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and a bried glance at MapReduce algorithms. | |||||

Skript | Link | |||||

Voraussetzungen / Besonderes | This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students. Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consulte the instructor. | |||||

Wählbare Kernfächer | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

151-0563-01L | Dynamic Programming and Optimal Control | W | 4 KP | 2V + 1U | R. D'Andrea | |

Kurzbeschreibung | Introduction to Dynamic Programming and Optimal Control. | |||||

Lernziel | Covers the fundamental concepts of Dynamic Programming & Optimal Control. | |||||

Inhalt | Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control. | |||||

Literatur | Dynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover. | |||||

Voraussetzungen / Besonderes | Requirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra. | |||||

227-0101-00L | Discrete-Time and Statistical Signal Processing | W | 6 KP | 4G | H.‑A. Loeliger | |

Kurzbeschreibung | The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm. | |||||

Lernziel | The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter. | |||||

Inhalt | 1. Discrete-time linear systems and filters: state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion. 2. The discrete Fourier transform and its use for digital filtering. 3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm. | |||||

Skript | Lecture Notes | |||||

227-0417-00L | Information Theory I | W | 6 KP | 4G | A. Lapidoth | |

Kurzbeschreibung | This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity. | |||||

Lernziel | The fundamentals of Information Theory including Shannon's source coding and channel coding theorems | |||||

Inhalt | The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity | |||||

Literatur | T.M. Cover and J. Thomas, Elements of Information Theory (second edition) | |||||

227-0427-00L | Signal Analysis, Models, and Machine Learning | W | 6 KP | 4G | H.‑A. Loeliger | |

Kurzbeschreibung | Mathematical methods in signal processing and machine learning. I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity. II. Learning linear and nonlinear functions and filters: neural networks, kernel methods. III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, Gaussian models with sparse events. | |||||

Lernziel | The course is an introduction to some basic topics in signal processing and machine learning. | |||||

Inhalt | Part I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-components analysis. Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods. Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximization, linear Gaussian models with sparse events. | |||||

Skript | Lecture notes. | |||||

Voraussetzungen / Besonderes | Prerequisites: - local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.) - others: solid basics in linear algebra and probability theory | |||||

227-0689-00L | System Identification | W | 4 KP | 2V + 1U | R. Smith | |

Kurzbeschreibung | Theory and techniques for the identification of dynamic models from experimentally obtained system input-output data. | |||||

Lernziel | To provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity. | |||||

Inhalt | Introduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models. Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods. Optimal experimental design, Cramer-Rao bounds, input signal design. Parametric identification methods. On-line and batch approaches. Closed-loop identification strategies. Trade-off between controller performance and information available for identification. | |||||

Literatur | "System Identification; Theory for the User" Lennart Ljung, Prentice Hall (2nd Ed), 1999. "Dynamic system identification: Experimental design and data analysis", GC Goodwin and RL Payne, Academic Press, 1977. | |||||

Voraussetzungen / Besonderes | Control systems (227-0216-00L) or equivalent. | |||||

252-0417-00L | Randomized Algorithms and Probabilistic Methods | W | 8 KP | 3V + 2U + 2A | A. Steger | |

Kurzbeschreibung | Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks | |||||

Lernziel | After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas. | |||||

Inhalt | Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas. | |||||

Skript | Yes. | |||||

Literatur | - Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995) - Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005) | |||||

252-1407-00L | Algorithmic Game Theory | W | 7 KP | 3V + 2U + 1A | P. Penna | |

Kurzbeschreibung | Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory. | |||||

Lernziel | Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting. | |||||

Inhalt | The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a particularly well-suited model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good. This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth. Outline: - Introduction to classic game-theoretic concepts. - Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity. - Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization. - Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy'). - Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium. - Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange. | |||||

Skript | Lecture notes will be usually posted on the website shortly after each lecture. | |||||

Literatur | "Algorithmic Game Theory", edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2008; "Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004 Several copies of both books are available in the Computer Science library. | |||||

Voraussetzungen / Besonderes | Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic. Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required. | |||||

252-1414-00L | System Security | W | 7 KP | 2V + 2U + 2A | S. Capkun, A. Perrig | |

Kurzbeschreibung | The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems. | |||||

Lernziel | In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met. | |||||

Inhalt | The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX). Along the lectures, model cases will be elaborated and evaluated in the exercises. | |||||

261-5130-00L | Research in Data Science Only for Data Science MSc. | W | 6 KP | 13A | Professor/innen | |

Kurzbeschreibung | Independent work under the supervision of a core or adjunct faculty of data science. | |||||

Lernziel | Independent work under the supervision of a core or adjunct faculty of data science. An approval of the director of studies is required for a non DS professor. | |||||

Inhalt | Project done under supervision of an approved professor. | |||||

Voraussetzungen / Besonderes | Only students who have passed at least one core course in Data Management and Processing, and one core course in Data Analysis can start with a research project. A project description must be submitted at the start of the project to the studies administration. | |||||

263-0006-00L | Algorithms Lab Only for master students, otherwise a special permission by the student administration of D-INFK is required. | W | 8 KP | 4P + 3A | A. Steger | |

Kurzbeschreibung | Students learn how to solve algorithmic problems given by a textual description (understanding problem setting, finding appropriate modeling, choosing suitable algorithms, and implementing them). Knowledge of basic algorithms and data structures is assumed; more advanced material and usage of standard libraries for combinatorial algorithms are introduced in tutorials. | |||||

Lernziel | The objective of this course is to learn how to solve algorithmic problems given by a textual description. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and implementing them (using C/C++, STL, CGAL, and BGL). | |||||

Literatur | T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, MIT Press, 1990. J. Hromkovic, Teubner: Theoretische Informatik, Springer, 2004 (English: Theoretical Computer Science, Springer 2003). J. Kleinberg, É. Tardos: Algorithm Design, Addison Wesley, 2006. H. R. Lewis, C. H. Papadimitriou: Elements of the Theory of Computation, Prentice Hall, 1998. T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Spektrum, 2012. R. Sedgewick: Algorithms in C++: Graph Algorithms, Addison-Wesley, 2001. | |||||

263-0007-00L | Advanced Systems Lab Beschränkte Teilnehmerzahl. Das ASL findet zum letzten Mal in dieser Form statt. Studierende, welche das Lab repetieren, haben Vorrang. Alle anderen besuchen das Lab im FS20! | W | 8 KP | 4P + 3A | G. Alonso | |

Kurzbeschreibung | The goal of this course is to teach students how to evaluate the performance of complex computer and software systems. Accordingly, the methodology to carry out experiments and measurements is studied. Furthermore, the modelling of systems with the help of queueing network systems is explained. | |||||

Lernziel | The goal of this course is to teach students how to evaluate the performance of complex computer and software systems. | |||||

263-2400-00L | Reliable and Interpretable Artificial Intelligence | W | 5 KP | 2V + 1U + 1A | M. Vechev | |

Kurzbeschreibung | Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models. | |||||

Lernziel | The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems. To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material. | |||||

Inhalt | The course covers some of the latest research (over the last 2-3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: Link): * Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution) * Defenses against attacks * Combining gradient-based optimization with logic for encoding background knowledge * Complete Certification of deep neural networks via automated reasoning (e.g., via numerical abstractions, mixed-integer solvers). * Probabilistic certification of deep neural networks * Training deep neural networks to be provably robust via automated reasoning * Understanding and Interpreting Deep Networks * Probabilistic Programming | |||||

Voraussetzungen / Besonderes | While not a formal requirement, the course assumes familiarity with basics of machine learning (especially probability theory, linear algebra, gradient descent, and neural networks). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH). For solving assignments, some programming experience in Python is excepted. | |||||

263-2800-00L | Design of Parallel and High-Performance Computing | W | 8 KP | 3V + 2U + 2A | M. Püschel, T. Ben Nun | |

Kurzbeschreibung | Advanced topics in parallel / concurrent programming. | |||||

Lernziel | Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore. | |||||

263-3210-00L | Deep Learning | W | 5 KP | 2V + 1U + 1A | T. Hofmann | |

Kurzbeschreibung | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||

Lernziel | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||

Voraussetzungen / Besonderes | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following condition: - Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Advanced Machine Learning Link Computational Intelligence Lab Link Introduction to Machine Learning Link Statistical Learning Theory Link Computational Statistics Link Probabilistic Artificial Intelligence Link | |||||

263-5210-00L | Probabilistic Artificial Intelligence | W | 5 KP | 2V + 1U + 1A | A. Krause | |

Kurzbeschreibung | This course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. | |||||

Lernziel | How can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students. | |||||

Inhalt | Topics covered: - Search (BFS, DFS, A*), constraint satisfaction and optimization - Tutorial in logic (propositional, first-order) - Probability - Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks) - Probabilistic palnning (MDPs, POMPDPs) - Reinforcement learning - Combining logic and probability | |||||

Voraussetzungen / Besonderes | Solid basic knowledge in statistics, algorithms and programming |

- Seite 1 von 4 Alle