Search result: Catalogue data in Spring Semester 2019

DAS in Data Science Information
Specialisation Track
Statistics
NumberTitleTypeECTSHoursLecturers
401-0102-00LApplied Multivariate StatisticsW5 credits2V + 1UF. Sigrist
AbstractMultivariate statistics analyzes data on several random variables simultaneously. This course introduces the basic concepts and provides an overview of classical and modern methods of multivariate statistics including visualization, dimension reduction, supervised and unsupervised learning for multivariate data. An emphasis is on applications and solving problems with the statistical software R.
ObjectiveAfter the course, you are able to:
- describe the various methods and the concepts behind them
- identify adequate methods for a given statistical problem
- use the statistical software R to efficiently apply these methods
- interpret the output of these methods
ContentVisualization, multivariate outliers, the multivariate normal distribution, dimension reduction, principal component analysis, multidimensional scaling, factor analysis, cluster analysis, classification, multivariate tests and multiple testing
Lecture notesNone
Literature1) "An Introduction to Applied Multivariate Analysis with R" (2011) by Everitt and Hothorn
2) "An Introduction to Statistical Learning: With Applications in R" (2013) by Gareth, Witten, Hastie and Tibshirani

Electronic versions (pdf) of both books can be downloaded for free from the ETH library.
Prerequisites / NoticeThis course is targeted at students with a non-math background.

Requirements:
==========
1) Introductory course in statistics (min: t-test, regression; ideal: conditional probability, multiple regression)
2) Good understanding of R (if you don't know R, it is recommended that you study chapters 1,2,3,4, and 5 of "Introductory Statistics with R" from Peter Dalgaard, which is freely available online from the ETH library)

An alternative course with more emphasis on theory is 401-6102-00L "Multivariate Statistics" (only every second year).

401-0102-00L and 401-6102-00L are mutually exclusive. You can register for only one of these two courses.
401-3622-00LRegression
Does not take place this semester.
W8 credits4Gnot available
AbstractIn regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.
ObjectiveIntroduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.
ContentIn der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle. Querverbindungen zur Varianzanalyse, Modellsuche, Residuenanalyse; Einblicke in Robuste Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
Lecture notesLecture notes
Prerequisites / NoticeCredits cannot be recognised for both courses 401-3622-00L Regression and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
401-4632-15LCausality Information W4 credits2GC. Heinze-Deml
AbstractIn statistics, we are used to search for the best predictors of some random variable. In many situations, however, we are interested in predicting a system's behavior under manipulations. For such an analysis, we require knowledge about the underlying causal structure of the system. In this course, we study concepts and theory behind causal inference.
ObjectiveAfter this course, you should be able to
- understand the language and concepts of causal inference
- know the assumptions under which one can infer causal relations from observational and/or interventional data
- describe and apply different methods for causal structure learning
- given data and a causal structure, derive causal effects and predictions of interventional experiments
Prerequisites / NoticePrerequisites: basic knowledge of probability theory and regression
401-6102-00LMultivariate StatisticsW4 credits2GN. Meinshausen
AbstractMultivariate Statistics deals with joint distributions of several random variables. This course introduces the basic concepts and provides an overview over classical and modern methods of multivariate statistics. We will consider the theory behind the methods as well as their applications.
ObjectiveAfter the course, you should be able to:
- describe the various methods and the concepts and theory behind them
- identify adequate methods for a given statistical problem
- use the statistical software "R" to efficiently apply these methods
- interpret the output of these methods
ContentVisualization / Principal component analysis / Multidimensional scaling / The multivariate Normal distribution / Factor analysis / Supervised learning / Cluster analysis
Lecture notesNone
LiteratureThe course will be based on class notes and books that are available electronically via the ETH library.
Prerequisites / NoticeTarget audience: This course is the more theoretical version of "Applied Multivariate Statistics" (401-0102-00L) and is targeted at students with a math background.

Prerequisite: A basic course in probability and statistics.

Note: The courses 401-0102-00L and 401-6102-00L are mutually exclusive. You may register for at most one of these two course units.
401-6624-11LApplied Time SeriesW5 credits2V + 1UM. Dettling
AbstractThe course starts with an introduction to time series analysis (examples, goal, mathematical notation). In the following, descriptive techniques, modeling and prediction as well as advanced topics will be covered.
ObjectiveGetting to know the mathematical properties of time series, as well as the requirements, descriptive techniques, models, advanced methods and software that are necessary such that the student can independently run an applied time series analysis.
ContentThe course starts with an introduction to time series analysis that comprises of examples and goals. We continue with notation and descriptive analysis of time series. A major part of the course will be dedicated to modeling and forecasting of time series using the flexible class of ARMA models. More advanced topics that will be covered in the following are time series regression, state space models and spectral analysis.
Lecture notesA script will be available.
Prerequisites / NoticeThe course starts with an introduction to time series analysis that comprises of examples and goals. We continue with notation and descriptive analysis of time series. A major part of the course will be dedicated to modeling and forecasting of time series using the flexible class of ARMA models. More advanced topics that will be covered in the following are time series regression, state space models and spectral analysis.
  •  Page  1  of  1