Search result: Catalogue data in Spring Semester 2019
Food Science Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
752-3022-00L | Food Factory Planning and Design | W | 3 credits | 2G | P. Beck, S. Padar | |
Abstract | The focus is directed on the interaction (and interdependency) of the different crafts involved, mainly construction, building services, and installation engineering. Hygienic requirements have to be designed and finally are implemented in order to achieve international standards (GMP, IFS, BRC). Insight is given into contract and payment handling. | |||||
Objective | Students learn about the tasks and responsibilities of the specialists (engineers, planners), organizations and distributors involved. Knowledge is provided on the coordination and guidance of people involved. An insight into hygienic and technical specifications as well as the regulatory framework is given. Finally, the implementation of a functional, ecological and cost efficient solution is discussed. | |||||
Lecture notes | Vorlesungsunterlagen (besprochene Folien, ca. 190 Seiten) können von der Lehrdokumentenablage MyStudies heruntergeladen werden. | |||||
752-3024-00L | Hygienic Design | W | 2 credits | 2G | J. Hofmann | |
Abstract | The lecture course Hygienic Design covers the special requirements in the design of equipment and components used in food production. Material science and surface treatments are as important as the cleaning mechanisms of these surfaces. Explanations of basic design requirements in food production areas, as well as the relevant regulations associated, are covered in this course. | |||||
Objective | To identify and evaluate hazards of food safety which can come from the equipment used in the food processing. Understanding of the most important design principles for easy cleaning of machinery and equipment. | |||||
752-3104-00L | Food Rheology II | W | 3 credits | 2G | P. A. Fischer | |
Abstract | Food Rheology II addresses special chapters in rheology such as suspension and emulsion rheology, constitutive equations, extensional rheology, optical methods in rheology, and interfacial rheology. | |||||
Objective | The rheology of complex materials such as solutions, emulsions, and suspension will be discussed. In addition, several advanced rheological techniques (extension, rheo-optics, interfacial rheology) will be introduced and discussed in light of material characterization of complex fluids. | |||||
Content | Lectures will be given on structure and rheology of complex fluids (8h), constitutive equations (2h), optical methods in rheology (4h), extensional rheology (4h), and interfacial rheology (6h). | |||||
Lecture notes | Notes will be handed out during the lectures. | |||||
Literature | Provided in the lecture notes. | |||||
Prerequisites / Notice | Attending Food Rheology I is beneficial but not mandatory. A short repetition of the basic principles of rheology will be given in the beginning of Food Rheology II. | |||||
389-5000-00L | Computational Fluid Dynamics for Non-Newtonian Flows ![]() Does not take place this semester. | W | 3 credits | 2G | E. J. Windhab | |
Abstract | Solving inelastic non-Newtonian flow problems using finite volume techniques. Topics include an introduction to fluid dynamics, a discussion of non-Newtonian viscosity models, and a discussion of numerical issues, such as accuracy, convergence, and stability. Topics also include two-phase flow problems with moving interfaces, turbulence modeling, and spray modeling. | |||||
Objective | Introduction to the foundations of Computational Fluid Dynamics (CFD) for non-Newtonian fluid systems. The course provides participants with theoretical background in CFD methods, discusses applications in various fields, and provides hands-on experience using CFD software via practical computer exercises. | |||||
Content | 1. Tensor review and Fluid dynamics review 2. Rheology and constitutive equations for non-Newtonian systems 3. Boundary conditions including moving boundaries 4. Basic concepts of Finite Volume Method 5. Finite Volume Methods applied to flow problems 6. Introduction to the OpenFOAM CFD software package 7. Numerical issues such as convergence, stability and accuracy 8. Applications, e.g. multi-phase flows, turbulence and sprays | |||||
Lecture notes | Lecture notes will be distributed electronically | |||||
Prerequisites / Notice | The course includes computer exercises using the open source software OpenFOAM. Participants are expected to have sufficient computer skills and access to a laptop for the in-class computer exercises. |
Page 1 of 1