# Search result: Catalogue data in Spring Semester 2019

Chemistry Master | ||||||

Course Units for Additional Admission Requirements The courses below are only available to MSc students with additional admission requirements. | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

529-0051-AAL | Analytical Chemistry IEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. All other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 3 credits | 6R | D. Günther, R. Zenobi | |

Abstract | Introduction into the most important spectroscopical methods and their applications to gain structural information. | |||||

Objective | Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications | |||||

Content | Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods: Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements. NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling. IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy. UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD). Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation. | |||||

Lecture notes | Script will be provided for factory costs. | |||||

Literature | - R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; - D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996; - M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995 - E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001- Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1. | |||||

Prerequisites / Notice | Excercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended. | |||||

529-0058-AAL | Analytical Chemistry IIEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 3 credits | 6R | D. Günther, M.‑O. Ebert, P. Lienemann, G. Schwarz, R. Zenobi | |

Abstract | Enhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included. | |||||

Objective | Use and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems. | |||||

Content | Combined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS. | |||||

Literature | general: R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; XRF: R. Schramm, X-Ray Fluorescence Analysis: Practical and Easy, Fluxana, Kleve, 2012; ICP-MS: R. Thomas, Practical Guide to ICP-MS - A Tutorial for beginners, 3rd Edition, CRC Press, Taylor & Francis Group, Boca Raton, 2013 (especially: chapters 1-15, 19 and 21). Separation methods: S. Ahuja (Ed.), Chromatography and Separation Science, Volume 4 of series "Separation Science and Technology", Elsevier Academic Press, San Diego, 2003. K. Robards, P. R. Haddad, and P. E. Jackson, Principle and Practise of Modern Chromatographic Methods, Academic Press, London, 1994. F. Foret, L. Krivankova, and P. Bocek, Capillary Zone Electrophoresis, VCH, Weinheim (1993) | |||||

Prerequisites / Notice | None. | |||||

529-0132-AAL | Inorganic Chemistry III: Organometallic Chemistry and Homogeneous CatalysisEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. All other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 4 credits | 9R | A. Togni, A. Mezzetti | |

Abstract | Fundamental aspects of the organometallic chemistry ot the transition elements. Mechanistic homogeneous catalysis including oxidative additions, reductive eliminations and insertion reactions. Catalytic hydrogenation, carbonylation, C-C bond-forming and related reactions. | |||||

Objective | Towards an understanding of the fundamental coordination-chemical and mechanistic aspects of transition-metal chemistry relevant to homogeneous catalysis. | |||||

Content | Fundamental aspects of the organometallic chemistry ot the transition elements. Mechanistic homogeneous catalysis including oxidative additions, reductive eliminations and insertion reactions. Catalytic hydrogenation, carbonylation, C-C bond-forming and related reactions. | |||||

Literature | 1) Robert H. Crabtree, The Organometallic Chemistry of the Transition Metals, 6th Edition, Wiley, 2014, ISBN: 978-1-118-13807-6. A relatively concise but excellent introduction to organometallic chemistry. Strong textbook character, available as E-book 2) John F. Hartwig, Organotransition Metal Chemistry. From Bonding to Catalysis, University Science Books, 2010, ISBN: 978-1-891389-53-5. A more comprehensive standard work on organometallic chemistry. Several chapters written by various authors, partly specialized review-article style. | |||||

529-0431-AAL | Physical Chemistry III: Molecular Quantum Mechanics Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. All other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 4 credits | 9R | B. H. Meier, M. Ernst | |

Abstract | Postulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation. | |||||

Objective | This is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules. | |||||

Content | Postulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures). | |||||

Literature | P.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics, 5th Edition, Oxford University Press 2010, ISBN 978-0-19-954142-3. J.S. Townsend: A Modern Approach to Quantum Mechanics, 2nd Edition, University Science Books 2012, ISBN 978-1-89-138-978-8. |

- Page 1 of 1