Suchergebnis: Katalogdaten im Frühjahrssemester 2019
Interdisziplinäre Naturwissenschaften Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
401-1262-07L | Analysis II ![]() | O | 10 KP | 6V + 3U | P. S. Jossen | |
Kurzbeschreibung | Einführung in die Differential- und Integralrechnung in mehreren reellen Veränderlichen, Vektoranalysis: Differential, partielle Ableitungen, Satz über implizite Funktionen, Umkehrsatz, Extrema mit Nebenbedingungen; Riemannsches Integral, Vektorfelder und Differentialformen, Wegintegrale, Oberflächenintegrale, Integralsätze von Gauss und Stokes. | |||||
Lernziel | ||||||
Inhalt | Mehrdimensionale Differential- und Integralrechnung; Kurven und Flächen im R^n; Extremalaufgaben; Mehrfache Integrale; Vektoranalysis. | |||||
Literatur | H. Amann, J. Escher: Analysis II https://link.springer.com/book/10.1007/3-7643-7402-0 J. Appell: Analysis in Beispielen und Gegenbeispielen https://link.springer.com/book/10.1007/978-3-540-88903-8 R. Courant: Vorlesungen über Differential- und Integralrechnung https://link.springer.com/book/10.1007/978-3-642-61973-1 O. Forster: Analysis 2 https://link.springer.com/book/10.1007/978-3-658-02357-7 H. Heuser: Lehrbuch der Analysis https://link.springer.com/book/10.1007/978-3-322-96826-5 K. Königsberger: Analysis 2 https://link.springer.com/book/10.1007/3-540-35077-2 W. Walter: Analysis 2 https://link.springer.com/book/10.1007/978-3-642-97614-8 V. Zorich: Mathematical Analysis II (englisch) https://link.springer.com/book/10.1007/978-3-662-48993-2 | |||||
401-1152-02L | Lineare Algebra II ![]() | O | 7 KP | 4V + 2U | R. Pink | |
Kurzbeschreibung | Eigenwerte und Eigenvektoren, Jordan-Normalform, Bilinearformen, Euklidische und Unitäre Vektorräume, ausgewählte Anwendungen. | |||||
Lernziel | Verständnis der wichtigsten Grundlagen der Linearen Algebra. | |||||
Literatur | Siehe Lineare Algebra I | |||||
Voraussetzungen / Besonderes | Lineare Algebra I | |||||
402-1782-00L | Physik II Flankierend zur Vorlesung "Physik II" wird das folgende Fach aus GESS Wissenschaft im Kontext angeboten: 851-0147-01L Philosophische Betrachtungen zur Physik II | O | 7 KP | 4V + 2U | K. S. Kirch | |
Kurzbeschreibung | Einführung in die Wellenlehre, Elektrizität und Magnetismus. Diese Vorlesung stellt die Weiterführung von Physik I dar, in der die Grundlagen der Mechanik gegeben wurden. | |||||
Lernziel | Grundkenntnisse zur Mechanik sowie Elektrizität und Magnetismus sowie die Fähigkeit, physikalische Problemstellungen zu diesen Themen eigenhändig zu lösen. | |||||
529-0012-01L | Physikalische Chemie I: Thermodynamik ![]() | O | 4 KP | 3V + 1U | F. Merkt | |
Kurzbeschreibung | Grundlagen der chemischen Thermodynamik. Die drei Hauptsätze der Thermodynamik: Thermodynamische Temperaturskala, innere Energie, Enthalpie, Entropie, das chemische Potential. Lösungen und Mischungen, Phasendiagramme. Reaktionsthermodynamik: Reaktionsgrössen und Gleichgewichtsbedingungen, Gleichgewichtskonstante. Thermodynamik von Oberflächenprozessen. | |||||
Lernziel | Einführung in die chemische Thermodynamik | |||||
Inhalt | Zustandsgrössen und Prozessgrössen, das totale Differential als mathematische Beschreibung von Zustandsänderungen. Modelle: Das ideale und das reale Gas. Die drei Hauptsätze der Thermodynamik: Empirische Temperatur und thermodynamische Temperaturskala, innere Energie, Enthalpie, Entropie, thermisches Gleichgewicht. Mischphasenthermodynamik: Das chemische Potential. Ideale Lösungen und Mischungen, reale Lösungen und Mischungen, Aktivität, kolligative Eigenschaften. Tabellierung thermodynamischer Standardgrössen. Reaktionsthermodynamik: Reaktionsgrössen und Gleichgewichtsbedingungen, Gleichgewichtskonstante und deren Druck- und Temperaturabhängigkeit. Phasengleichgewichte und Phasendiagramme. Thermodynamik von Oberflächen und Grenzflächen: Adsorptionsgleichgewichte, Kapillarkräfte, Adsorptionsisothermen. | |||||
Skript | Beachten Sie die Homepage zur Vorlesung. | |||||
Literatur | Beachten Sie die Homepage zur Vorlesung. | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Allgemeine Chemie I, Grundlagen der Mathematik |
Seite 1 von 1