Search result: Catalogue data in Autumn Semester 2018

Electrical Engineering and Information Technology Master Information
Master Studies (Programme Regulations 2018)
Computers and Networks
The core courses and specialization courses below are a selection for students who wish to specialize in the area of "Computers and Networks", see Link.

The individual study plan is subject to the tutor's approval.
Specialization Courses
These specialization courses are particularly recommended for the area of "Computers and Networks", but you are free to choose courses from any other field in agreement with your tutor.

A minimum of 40 credits must be obtained from specialization courses during the Master's Programme.
NumberTitleTypeECTSHoursLecturers
227-0101-00LDiscrete-Time and Statistical Signal ProcessingW6 credits4GH.‑A. Loeliger
AbstractThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
ObjectiveThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Content1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
Lecture notesLecture Notes
227-0103-00LControl Systems Information W6 credits2V + 2UF. Dörfler
AbstractStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ObjectiveStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ContentProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteratureK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Prerequisites / NoticePrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0116-00LVLSI I: From Architectures to VLSI Circuits and FPGAs Information W6 credits5GF. K. Gürkaynak, L. Benini
AbstractThis first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.
ObjectiveUnderstand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with VHDL or SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language VHDL and with industrial Electronic Design Automation (EDA) tools.
ContentThis course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- VLSI and FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- VHDL and SystemVerilog compared.
- VHDL (IEEE standard 1076) for simulation and synthesis.
- A suitable nine-valued logic system (IEEE standard 1164).
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model digital ICs with VHDL. They write testbenches for simulation purposes and synthesize gate-level netlists for VLSI chips and FPGAs. Commercial EDA software by leading vendors is being used throughout.
Lecture notesTextbook and all further documents in English.
LiteratureH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Prerequisites / NoticePrerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
Link
227-0377-00LPhysics of Failure and Failure Analysis of Electronic Devices and EquipmentW3 credits2VU. Sennhauser
AbstractFailures have to be avoided by proper design, material selection and manufacturing. Properties, degradation mechanisms, and expected lifetime of materials are introduced and the basics of failure analysis and analysis equipment are presented. Failures will be demonstrated experimentally and the opportunity is offered to perform a failure analysis with advanced equipment in the laboratory.
ObjectiveIntroduction to the degradation and failure mechanisms and causes of electronic components, devices and systems as well as to methods and tools of reliability testing, characterization and failure analysis.
ContentSummary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis of ICs, PCBs, opto-electronics, discrete and other components and devices; basics and properties of instruments; application in circuit design and reliability analysis
Lecture notesComprehensive copy of transparencies
252-0437-00LDistributed Algorithms Information W4 credits3VF. Mattern
AbstractModels of distributed computations, time space diagrams, virtual time, logical clocks and causality, wave algorithms, parallel and distributed graph traversal, consistent snapshots, mutual exclusion, election and symmetry breaking, distributed termination detection, garbage collection in distributed systems, monitoring distributed systems, global predicates.
ObjectiveBecome acquainted with models and algorithms for distributed systems.
ContentVerteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen.
Im einzelnen werden u.a. folgende Themen behandelt:
Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate.
Literature- F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag
- G. Tel: Topics in Distributed Algorithms, Cambridge University Press
- G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition
- A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press
- N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThis course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.
227-0555-00LDistributed Systems Information W4 credits3GR. Wattenhofer
AbstractThis course introduces the fundamentals of distributed systems. We study different protocols and algorithms that allow for fault-tolerant operation, and discuss practical systems that implement these techniques.
ObjectiveThe objective of the course is for students to understand the theoretical principles and practical considerations of distributed systems. This includes the main models of fault-tolerant distributed systems (crash failures, byzantine failures, and selfishness), and the most important algorithms, protocols and impossibility results. By the end of the course, students should be able to reason about various concepts such as consistency, durability, availability, fault tolerance, and replication.
ContentWe discuss the following concepts related to fault-tolerant distributed systems: client-server, serialization, two-phase protocols, three-phase protocols, paxos, two generals problem, crash failures, impossibility of consensus, byzantine failures, agreement, termination, validity, byzantine agreement, king algorithm, asynchronous byzantine agreement, authentication, signatures, reliable and atomic broadcast, eventual consistency, blockchain, cryptocurrencies such as bitcoin and ethereum, proof-of-work, proof-of-*, smart contracts, quorum systems, fault-tolerant protocols such as piChain or pbft, distributed storage, distributed hash tables, physical and logical clocks, causality, selfishness, game theoretic models, mechanism design.
Lecture notesA script is available on the web page.
LiteratureThe script is self-contained, but links to additional material are available on the web page.
Prerequisites / NoticeThis lecture takes place in roughly the second half of the semester, as the lecture is the second part of the lecture "Computer Systems" (252-0217-00). Students may attend at most one of the two lectures, NOT both.
227-0627-00LApplied Computer ArchitectureW6 credits4GA. Gunzinger
AbstractThis lecture gives an overview of the requirements and the architecture of parallel computer systems, performance, reliability and costs.
ObjectiveUnderstand the function, the design and the performance modeling of parallel computer systems.
ContentThe lecture "Applied Computer Architecture" gives technical and corporate insights in the innovative Computer Systems/Architectures (CPU, GPU, FPGA, special processors) and their real implementations and applications. Often the designs have to deal with technical limits.
Which computer architecture allows the control of the over 1000 magnets at the Swiss Light Source (SLS)?
Which architecture is behind the alarm center of the Swiss Railway (SBB)?
Which computer architectures are applied for driver assistance systems?
Which computer architecture is hidden behind a professional digital audio mixing desk?
How can data streams of about 30 TB/s, produced by a protone accelerator, be processed in real time?
Can the weather forecast also be processed with GPUs?
How can a good computer architecture be found?
Which are the driving factors in succesful computer architecture design?
Lecture notesScript and exercices sheets.
Prerequisites / NoticePrerequisites:
Basics of computer architecture.
151-0593-00LEmbedded Control SystemsW4 credits6GJ. S. Freudenberg, M. Schmid Daners
AbstractThis course provides a comprehensive overview of embedded control systems. The concepts introduced are implemented and verified on a microprocessor-controlled haptic device.
ObjectiveFamiliarize students with main architectural principles and concepts of embedded control systems.
ContentAn embedded system is a microprocessor used as a component in another piece of technology, such as cell phones or automobiles. In this intensive two-week block course the students are presented the principles of embedded digital control systems using a haptic device as an example for a mechatronic system. A haptic interface allows for a human to interact with a computer through the sense of touch.

Subjects covered in lectures and practical lab exercises include:
- The application of C-programming on a microprocessor
- Digital I/O and serial communication
- Quadrature decoding for wheel position sensing
- Queued analog-to-digital conversion to interface with the analog world
- Pulse width modulation
- Timer interrupts to create sampling time intervals
- System dynamics and virtual worlds with haptic feedback
- Introduction to rapid prototyping
Lecture notesLecture notes, lab instructions, supplemental material
Prerequisites / NoticePrerequisite courses are Control Systems I and Informatics I.

This course is restricted to 33 students due to limited lab infrastructure. Interested students please contact Marianne Schmid (E-Mail: Link)
After your reservation has been confirmed please register online at Link.

Detailed information can be found on the course website
Link
252-1411-00LSecurity of Wireless Networks Information W5 credits2V + 1U + 1AS. Capkun
AbstractCore Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.
ObjectiveAfter this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure
802.11 networks.
ContentWireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and
multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions.
  •  Page  1  of  1