Search result: Catalogue data in Autumn Semester 2018

Physics Teaching Diploma Information
Detailed information on the programme at: Link
Spec. Courses in Resp. Subj. w/ Educ. Focus & Further Subj. Didactics
Students who entered the teaching diploma in the spring semester 2014 or later have to pass the Internship in Physics Didactics. All other courses in this area can be chosen individually.

Students who entered the teaching diploma before the spring semester 2014 have to do either a Mentored Work or the Internship in Physics Didactics. Of course it is also possible to complete and count both units for the teaching diploma.

Core courses that counted towards the Bachelor or Master programme in physics or comprised additional admission requirements in subject didactics are not eligible for the teaching diploma.
NumberTitleTypeECTSHoursLecturers
402-0351-00LAstronomyW2 credits2VS. P. Quanz
AbstractAn overview on the important topics in modern astronomy: planets, sun, stars, milky way, galaxies, and cosmology
ObjectiveThis lecture gives a general introduction to main topics in modern astronomy. The lecture provide a basis for the more advanced lectures in astrophysics.
ContentPlaneten, Sonne, Sterne, Milchstrasse, Galaxien und Kosmologie.
Lecture notesKopien der Präsentationen werde zur Verfügung gestellt.
LiteratureAstronomie. Harry Nussbaumer, Hans Martin Schmid
vdf Vorlesungsskripte (8. Auflage)

Der Neue Kosmos. A. Unsöld, B. Baschek, Springer
402-0505-00LPhysics in the SmartphoneW6 credits3GB. Batlogg, M. Sigrist
AbstractPhysics in today's high-tech smartphone. Examples: network topology and scratch proof glass, spin-orbit coupling - brighter displays, GPS and general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation), light-field cameras, CCD and CMOS light sensors, physics stops Moore's law, meta-materials for antennas, MEMS sensor physics, etc.
ObjectiveStudents recognize and appreciate the enormous impact "physics" has on today's high tech world. Abstract concepts, old and recent, encountered in the lectures are implemented and present all around us.

Students are actively involved in the preparation and presentation of the topics, and thus acquire valuable professional skills.
ContentWe explore how traditional and new physics concepts and achievements make their way into today's ubiquitous high-tech gadget : the smartphone.
Examples of topics include:
network topology and scratch proof Gorilla glass,
spin-orbit coupling makes for four times brighter displays,
no GPS without general theory of relativity,
electromagnetic response of matter (transparent metals for displays, GPS signal propagation in the atmosphere),
lightfield cameras replacing CCD and CMOS light sensors,
physical limitations to IC scaling: the end of "Moore's law",
meta-materials for antennas,
physics of the various MEMS sensors,
etc., etc.,
Lecture notesThe presentation material and original literature will be distributed weekly.
Prerequisites / NoticeBasic physics lectures and introduction to solid state physics are expected.

This is a "3 hour" course, with two hours set for <tba>, and the third one to be set at the beginning of the semester.

An introductory event is planed in the first week of the term on Wednesday, September 19th - 17:45 in the room HIT K51. In this meeting we will fix the time of the usual lecture and we will distribute the topics for the presentations during the term. The tutors will briefly present each topics.
402-0737-00LEnergy and Environment in the 21st Century (Part I)W6 credits2V + 1UM. Dittmar
AbstractThe energy and related environmental problems, the physics principles of using energy and the various real and hypothetical options are discussed from a physicist point of view. The lecture is intended for students of all ages with an interest in a rational approach to the energy problem of the 21st century.
ObjectiveScientists and espially physicists are often confronted with questions
related to the problems of energy and the environment.
The lecture tries to address the physical principles of todays and tomorrow
energy use and the resulting global consequences for the world climate.

The lecture is for students which are interested
participate in a rational and responsible debatte about the
energyproblem of the 21. century.
ContentIntroduction: energy types, energy carriers, energy density
and energy usage. How much energy does a human needs/uses?

Energy conservation and the first and second law of thermodynamics

Fossile fuels (our stored energy resources) and their use.

Burning fossile fuels and the physics of the greenhouse effect.

physics basics of nuclear fission and fusion energy

controlled nuclear fission energy today, the different types of
nuclear power plants, uranium requirements and resources,
natural and artificial radioactivity and the related waste problems
from the nuclear fuel cycle.

Nuclear reactor accidents and the consequences,
a comparison with risks from other energy using methods.

The problems with nuclear fusion and the ITER project.

Nuclear fusion and fission: ``exotic'' ideas.

Hydrogen as an energy carrier: ideas and limits of a
hydrogen economy.

new clean renewable energy sources and their physical limits
(wind, solar, geothermal etc)

Energy perspectives for the next 100 years and some
final remarks
Lecture notesmany more details (in english and german) here:

Link
LiteratureDie Energiefrage - Bedarf und Potentiale, Nutzung, Risiken und Kosten:
Klaus Heinloth, 2003, VIEWEG ISBN: 3528131063;

Environmental Physics: Boeker and Egbert New York Wiley 1999
Prerequisites / NoticeScience promised us truth, or at least a knowledge
of such relations as our intelligence can seize:
it never promised us peace or happiness
Gustave Le Bon

Physicists learned to realize that whether they like a theory or
they don't like a theory is not the essential question.
Rather, it's whether or not the theory gives predictions that agree with experiment.
Richard Feynman, 1985
402-0944-00LScience in School (Current Topics for the Classroom) Restricted registration - show details
Does not take place this semester.
Enrolment in Physics Didactics I (402-0910-00L) and Physics Didactics II (402-0910-00L) is mandatory.
W2 credits2GA. Vaterlaus
AbstractIn dieser Veranstaltung geht es um die Frage, wie man moderne Themen der Physik oder neue Forschungsergebnisse in den Unterricht am Gymnasium integrieren kann. Welche Gebiete interessieren die Schülerinnen und Schüler? Welche Unterrichtsmethoden eignen sich für die Umsetzung? Wie soll man das Gelernte überprüfen?
ObjectiveDie Studierenden können eigenständig Lernumgebungen zu
modernen Themen der Astrophysik, Biophysik, Quantenphysik und der Festkörperphysik gestalten, die sich im Unterricht am Gymnasium einsetzen lassen.
ContentAufbau und Struktur von Lernaufgaben
Durchführung von Partner- und Gruppenarbeiten
Aufbau und Durchführung von Projektarbeiten
Betreuung von Maturaarbeiten
Ausarbeitungen von Unterrichtssequenzen zu modernen Themen der Physik.
Lecture notesUnterlagen werden verteilt.
LiteratureWird angegeben.
Prerequisites / NoticeDer Besuch der FD1 sowie der FD2 in Physik wird vorausgesetzt. Zu den Themen der Vorlesung können mentorierte Arbeiten verfasst werden.
402-0922-00LMentored Work Specialised Courses in Physics with an Educational Focus A Information Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Physics for TC and Teaching Diploma.
W2 credits4AG. Schiltz, A. Vaterlaus
AbstractIn the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
ObjectivePractice in the explanation of complex topics in physics as the core competence of the teaching profession

Improvement of the physics education by providing attractive recent topics with regard to future curricular decisions and the public view of physics
ContentChoice of topic by individual arrangement
402-0923-00LMentored Work Specialised Courses in Physics with an Educational Focus B Information Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Physics for Teaching Diploma and for students upgrading TC to Teaching Diploma.
W2 credits4AG. Schiltz, A. Vaterlaus
AbstractIn the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
ObjectivePractice in the explanation of complex topics in physics as the core competence of the teaching profession

Improvement of the physics education by providing attractive recent topics with regard to future curricular decisions and the public view of physics
ContentChoice of topic by individual arrangement
402-0924-00LInternship Physics Didactics Restricted registration - show details
Internship Physics Didactics for Teaching Diploma with Physics as First Subject.
W4 credits9PM. Mohr, A. Vaterlaus
AbstractDuring the Internship Physics Didactics students teach 8 lessons in the classes of an internship teaching person. Students develop, test and analyze teaching arrangement under the guidance of a mentor (one of the lecturers).
ObjectiveBasic knowledge for the design of teaching arrangements is the topic of the Physics Didactics I and II courses. In the subsequent Internship Physics Didactics students combine the theoretical knowledge acquired in the didactics courses with practical aspects of teaching. During the internship students learn to transform their teaching goals into a real live class room setting considering subject specific, didactical and pedagogical aspects.
ContentDas Fachdidaktikpraktikum bietet den Studierenden eine Möglichkeit, Lernumgebungen wirksam zu gestalten und ihr methodisches Repertoire gezielt zu erweitern. In Absprache mit der Praktikumslehrperson und dem Mentor werden die Aufträge für die Gestaltung der Arrangements formuliert. Die schriftlichen Ausarbeitungen und die Reflexionen über die Lektionen sind Bestandteil des Portfolios, welches die Studierenden für diese Veranstaltung anlegen. Zu den Lektionen führt die Praktikumslehrperson Vor- und Nachbesprechungen durch.
Lecture notesWird vom Mentor bestimmt.
Prerequisites / NoticeDas Fachdidaktikpraktikum kann erst nach dem Besuch der FD1 und frühestens mit der FD2 durchgeführt werden (eine gleichzeitige Belegung von Fachdidaktik 2 und Fachdidaktikpraktikum ist möglich).
402-0263-00LAstrophysics IW10 credits3V + 2UH. M. Schmid
AbstractThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
ObjectiveThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0255-00LIntroduction to Solid State PhysicsW10 credits3V + 2UK. Ensslin
AbstractThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.
ObjectiveIntroduction to Solid State Physics.
ContentThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.
Lecture notesThe script will be available on moodle.
LiteratureIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Prerequisites / NoticeVoraussetzungen: Physik I, II, III wünschenswert
  •  Page  1  of  1