# Search result: Catalogue data in Autumn Semester 2018

CAS in Computer Science | ||||||

Focus Courses and Electives | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

252-0237-00L | Concepts of Object-Oriented Programming | W | 6 credits | 3V + 2U | P. Müller | |

Abstract | Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection | |||||

Objective | After this course, students will: Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs. Be able to learn new languages more rapidly. Be aware of many subtle problems of object-oriented programming and know how to avoid them. | |||||

Content | The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages. The topics discussed in the course include among others: The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing) The key problems of single and multiple inheritance and how different languages address them Generic type systems, in particular, Java generics, C# generics, and C++ templates The situations in which object-oriented programming does not provide encapsulation, and how to avoid them The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing How to maintain the consistency of data structures | |||||

Literature | Will be announced in the lecture. | |||||

Prerequisites / Notice | Prerequisites: Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience | |||||

252-0286-00L | System Construction Number of participants limited to 30. | W | 4 credits | 2V + 1U | F. Friedrich Wicker | |

Abstract | Main goal is teaching knowledge and skills needed for building custom operating systems and runtime environments. Relevant topics are studied at the example of sufficiently simple systems that have been built at our Institute in the past, ranging from purpose-oriented single processor real-time systems up to generic system kernels on multi-core hardware. | |||||

Objective | The lecture's main goal is teaching of knowledge and skills needed for building custom operating systems and runtime environments. The lecture intends to supplement more abstract views of software construction, and to contribute to a better understanding of "how it really works" behind the scenes. | |||||

Content | Case Study 1: Embedded System - Safety-critical and fault-tolerant monitoring system - Based on an auto-pilot system for helicopters Case Study 2: Multi-Processor Operating System - Universal operating system for symmetric multiprocessors - Shared memory approach - Based on Language-/System Codesign (Active Oberon / A2) Case Study 3: Custom designed Single-Processor System - RISC Single-processor system designed from scratch - Hardware on FPGA - Graphical workstation OS and compiler (Project Oberon) Case Study 4: Custom-designed Multi-Processor System - Special purpose heterogeneous system on a chip - Masssively parallel hard- and software architecture based on message passing - Focus: dataflow based applications | |||||

Lecture notes | Lecture material will be made available from the lecture homepage. | |||||

252-0293-00L | Wireless Networking and Mobile Computing | W | 4 credits | 2V + 1U | S. Mangold | |

Abstract | This course gives a detailed overview about the wireless and mobile standards and summarizes the state of the art for Wi-Fi 802.11, Cellular 5G, and Internet-of-Things, including new topics such audio communication, cognitive radio, and visible light communications. The course combines lectures with a set of assignments in which students are asked to work with a simple JAVA simulation software. | |||||

Objective | The objective of the course is to learn about the general principles of wireless communications, including physics, frequency spectrum regulation, and standards. Further, the most up-to-date standards and protocols used for wireless LAN IEEE 802.11, Wi-Fi, Internet-of-Things, sensor networks, cellular networks, visible light communication, and cognitive radios, are analyzed and evaluated. Students develop their own add-on mobile computing algorithms to improve the behavior of the systems, using a Java-based event-driven simulator. We also hand out embedded systems that can be used for experiments for optical communication. | |||||

Content | Wireless Communication, Wi-Fi, Internet-of-Things, 5G, Standards, Regulation, Algorithms, Radio Spectrum, Cognitive Radio, Mesh Networks, Optical Communication, Visible Light Communication | |||||

Lecture notes | The script will be made available from the course webpage. | |||||

Literature | (1) The course webpage at Link (2) The Java 802 protocol emulator "JEmula802" (3) WALKE, B. AND MANGOLD, S. AND BERLEMANN, L. (2006) IEEE 802 Wireless Systems Protocols, Multi-Hop Mesh/Relaying, Performance and Spectrum Coexistence. New York U.S.A.: John Wiley & Sons. Nov 2006. (4) BERLEMANN, L. AND MANGOLD, S. (2009) Cognitive Radio for Dynamic Spectrum Access . New York U.S.A.: John Wiley & Sons. Jan 2009. (5) MANGOLD, S. ET.AL. (2003) Analysis of IEEE 802.11e for QoS Support in Wireless LANs. IEEE Wireless Communications, vol 10 (6), 40-50. | |||||

Prerequisites / Notice | Students should have interest in wireless communication, and should be familiar with Java programming. | |||||

252-0417-00L | Randomized Algorithms and Probabilistic Methods | W | 8 credits | 3V + 2U + 2A | A. Steger | |

Abstract | Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks | |||||

Objective | After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas. | |||||

Content | Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas. | |||||

Lecture notes | Yes. | |||||

Literature | - Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995) - Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005) | |||||

252-0437-00L | Distributed Algorithms | W | 4 credits | 3V | F. Mattern | |

Abstract | Models of distributed computations, time space diagrams, virtual time, logical clocks and causality, wave algorithms, parallel and distributed graph traversal, consistent snapshots, mutual exclusion, election and symmetry breaking, distributed termination detection, garbage collection in distributed systems, monitoring distributed systems, global predicates. | |||||

Objective | Become acquainted with models and algorithms for distributed systems. | |||||

Content | Verteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen. Im einzelnen werden u.a. folgende Themen behandelt: Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate. | |||||

Literature | - F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag - G. Tel: Topics in Distributed Algorithms, Cambridge University Press - G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition - A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press - N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ | |||||

252-0463-00L | Security Engineering | W | 5 credits | 2V + 2U | D. Basin | |

Abstract | Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems | |||||

Objective | Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data. The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems. Topics covered include * security requirements & risk analysis, * system modeling and model-based development methods, * implementation-level security, and * evaluation criteria for the development of secure systems | |||||

Content | Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data. The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems. Topics covered include * security requirements & risk analysis, * system modeling and model-based development methods, * implementation-level security, and * evaluation criteria for the development of secure systems Modules taught: 1. Introduction - Introduction of Infsec group and speakers - Security meets SW engineering: an introduction - The activities of SW engineering, and where security fits in - Overview of this class 2. Requirements Engineering: Security Requirements and some Analysis - overview: functional and non-functional requirements - use cases, misuse cases, sequence diagrams - safety and security - FMEA, FTA, attack trees 3. Modeling in the design activities - structure, behavior, and data flow - class diagrams, statecharts 4. Model-driven security for access control (design) - SecureUML as a language for access control - Combining Design Modeling Languages with SecureUML - Semantics, i.e., what does it all mean, - Generation - Examples and experience 5. Model-driven security (Part II) - Continuation of above topics 6. Security patterns (design and implementation) 7. Implementation-level security - Buffer overflows - Input checking - Injection attacks 8. Testing - overview - model-based testing - testing security properties 9. Risk analysis and management 1 (project management) - "risk": assets, threats, vulnerabilities, risk - risk assessment: quantitative and qualitative - safeguards - generic risk analysis procedure - The OCTAVE approach 10. Risk analysis: IT baseline protection - Overview - Example 11. Evaluation criteria - CMMI - systems security engineering CMM - common criteria 12. Guest lecture - TBA | |||||

Literature | - Ross Anderson: Security Engineering, Wiley, 2001. - Matt Bishop: Computer Security, Pearson Education, 2003. - Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001. - John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002. - Further relevant books and journal/conference articles will be announced in the lecture. | |||||

Prerequisites / Notice | Prerequisite: Class on Information Security | |||||

252-0527-00L | Probabilistic Graphical Models for Image Analysis | W | 4 credits | 3G | S. Bauer | |

Abstract | This course will focus on the algorithms for inference and learning with statistical models. We use a framework called probabilistic graphical models which include Bayesian Networks and Markov Random Fields. We will use examples from traditional vision problems such as image registration and image segmentation, as well as recent problems such as object recognition. | |||||

Objective | Students will be introduced to probablistic graphical models and will learn how to apply them to problems in image analysis and understanding. The focus will be to study various algorithms for inference and parameter learning. | |||||

Literature | Will be announced during the lecture. | |||||

252-0535-00L | Advanced Machine Learning | W | 8 credits | 3V + 2U + 2A | J. M. Buhmann | |

Abstract | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||

Objective | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||

Content | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||

Lecture notes | No lecture notes, but slides will be made available on the course webpage. | |||||

Literature | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||

Prerequisites / Notice | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. | |||||

252-0543-01L | Computer Graphics | W | 6 credits | 3V + 2U | M. Gross, J. Novak | |

Abstract | This course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes. | |||||

Objective | At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own. | |||||

Content | This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering. | |||||

Lecture notes | no | |||||

Prerequisites / Notice | Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended. The programming assignments will be in C++. This will not be taught in the class. | |||||

252-0546-00L | Physically-Based Simulation in Computer Graphics | W | 4 credits | 2V + 1U | M. Bächer, V. da Costa de Azevedo, B. Solenthaler | |

Abstract | This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application. | |||||

Objective | This lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application. | |||||

Content | The lecture covers topics in physically-based modeling, such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation. | |||||

Prerequisites / Notice | Fundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required. | |||||

252-1411-00L | Security of Wireless Networks | W | 5 credits | 2V + 1U + 1A | S. Capkun | |

Abstract | Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques. | |||||

Objective | After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks. | |||||

Content | Wireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions. | |||||

252-1414-00L | System Security | W | 5 credits | 2V + 2U | S. Capkun, A. Perrig | |

Abstract | The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems. | |||||

Objective | In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met. | |||||

Content | The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX). Along the lectures, model cases will be elaborated and evaluated in the exercises. | |||||

252-1425-00L | Geometry: Combinatorics and Algorithms | W | 6 credits | 2V + 2U + 1A | E. Welzl, L. F. Barba Flores, M. Hoffmann | |

Abstract | Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?) | |||||

Objective | The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains. In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project. | |||||

Content | Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations. | |||||

Lecture notes | yes | |||||

Literature | Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications, Springer, 3rd ed., 2008. Satyan Devadoss, Joseph O'Rourke, Discrete and Computational Geometry, Princeton University Press, 2011. Stefan Felsner, Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry, Teubner, 2004. Jiri Matousek, Lectures on Discrete Geometry, Springer, 2002. Takao Nishizeki, Md. Saidur Rahman, Planar Graph Drawing, World Scientific, 2004. | |||||

Prerequisites / Notice | Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH. Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area. | |||||

263-2210-00L | Computer Architecture | W | 8 credits | 6G + 1A | O. Mutlu | |

Abstract | Computer architecture is the science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance and cost goals. This course introduces the basic components of a modern computing system (processors, memory, interconnects, storage). The course takes a hardware/software cooperative approach to understanding and evaluating computing systems. | |||||

Objective | We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest trends by exploring the recent research in Industry and Academia. We will extensively cover memory technologies (including DRAM and new Non-Volatile Memory technologies), memory scheduling, parallel computing systems (including multicore processors and GPUs), heterogeneous computing, processing-in-memory, interconnection networks, etc. | |||||

Content | The principles presented in the lecture are reinforced in the laboratory through the design and simulation of a register transfer (RT) implementation of a MIPS-like pipelined processor in System Verilog. In addition, we will develop a cycle-accurate simulator of this processor in C, and we will use this simulator to explore processor design options. | |||||

Lecture notes | All the materials (including lecture slides) will be provided on the course website: Link The video recordings of the lectures are expected to be made available after lectures. | |||||

Literature | We will provide required and recommended readings in every lecture. They will be mostly recent research papers presented in major Computer Architecture conferences and journals. | |||||

Prerequisites / Notice | Design of Digital Circuits | |||||

263-2400-00L | Reliable and Interpretable Artificial Intelligence | W | 4 credits | 2V + 1U | M. Vechev | |

Abstract | Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models. | |||||

Objective | The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems. To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material. | |||||

Content | The course covers the following inter-connected directions. Part I: Robust and Explainable Deep Learning ------------------------------------------------------------- Deep learning technology has made impressive advances in recent years. Despite this progress however, the fundamental challenge with deep learning remains that of understanding what a trained neural network has actually learned, and how stable that solution is. Forr example: is the network stable to slight perturbations of the input (e.g., an image)? How easy it is to fool the network into mis-classifying obvious inputs? Can we guide the network in a manner beyond simple labeled data? Topics: - Attacks: Finding adversarial examples via state-of-the-art attacks (e.g., FGSM, PGD attacks). - Defenses: Automated methods and tools which guarantee robustness of deep nets (e.g., using abstract domains, mixed-integer solvers) - Combing differentiable logic with gradient-based methods so to train networks to satisfy richer properties. - Frameworks: AI2, DiffAI, Reluplex, DQL, DeepPoly, etc. Part II: Program Synthesis/Induction ------------------------------------------------ Synthesis is a new frontier in AI where the computer programs itself via user provided examples. Synthesis has significant applications for non-programmers as well as for programmers where it can provide massive productivity increase (e.g., wrangling for data scientists). Modern synthesis techniques excel at learning functions over discrete spaces from (partial) intent. There have been a number of recent, exciting breakthroughs in techniques that discover complex, interpretable/explainable functions from few examples, partial sketches and other forms of supervision. Topics: - Theory of program synthesis: version spaces, counter-example guided inductive synthesis (CEGIS) with SAT/SMT, lower bounds on learning. - Applications of techniques: synthesis for end users (e.g., spreadsheets) and data analytics. - Combining synthesis with learning: application to learning from code. - Frameworks: PHOG, DeepCode. Part III: Probabilistic Programming ---------------------------------------------- Probabilistic programming is an emerging direction, recently also pushed by various companies (e.g., Facebook, Uber, Google) whose goal is democratize the construction of probabilistic models. In probabilistic programming, the user specifies a model while inference is left to the underlying solver. The idea is that the higher level of abstraction makes it easier to express, understand and reason about probabilistic models. Topics: - Probabilistic Inference: sampling based, exact symbolic inference, semantics - Applications of probabilistic programming: bias in deep learning, differential privacy (connects to Part I). - Frameworks: PSI, Edward2, Venture. | |||||

Prerequisites / Notice | The course material is self-contained: needed background is covered in the lectures and exercises, and additional pointers. | |||||

263-2800-00L | Design of Parallel and High-Performance Computing | W | 7 credits | 3V + 2U + 1A | T. Hoefler, M. Püschel | |

Abstract | Advanced topics in parallel / concurrent programming. | |||||

Objective | Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore. | |||||

263-3010-00L | Big Data | W | 8 credits | 3V + 2U + 2A | G. Fourny | |

Abstract | The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations. | |||||

Objective | This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm". Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small. The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof. After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently. | |||||

Content | This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. The material is organized along three axes: data in the large, data in the small, data in the very small. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem. - physical storage: distributed file systems (HDFS), object storage(S3), key-value stores - logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP) - data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro) - data shapes and models (tables, trees, graphs, cubes) - type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +) - an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX) - the most important query paradigms (selection, projection, joining, grouping, ordering, windowing) - paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark) - resource management (YARN) - what a data center is made of and why it matters (racks, nodes, ...) - underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j) - optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing) - applications. Large scale analytics and machine learning are outside of the scope of this course. | |||||

Literature | Papers from scientific conferences and journals. References will be given as part of the course material during the semester. | |||||

Prerequisites / Notice | This course, in the autumn semester, is only intended for: - Computer Science students - Data Science students - CBB students with a Computer Science background Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added. Another version of this course will be offered in Spring for students of other departments. However, if you would like to already start learning about databases now, a course worth taking as a preparation/good prequel to the Spring edition of Big Data is the "Information Systems for Engineers" course, offered this Fall for other departments as well, and introducing relational databases and SQL. | |||||

263-3210-00L | Deep Learning Number of participants limited to 300. | W | 4 credits | 2V + 1U | F. Perez Cruz | |

Abstract | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||

Objective | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||

Prerequisites / Notice | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following conditions: 1) The number of participants is limited to 300 students (MSc and PhDs). 2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Machine Learning Link Computational Intelligence Lab Link Learning and Intelligent Systems/Introduction to Machine Learning Link Statistical Learning Theory Link Computational Statistics Link Probabilistic Artificial Intelligence Link Data Mining: Learning from Large Data Sets Link | |||||

252-3610-00L | Smart Energy | W | 5 credits | 3G + 1A | F. Mattern, V. C. Coroama, V. Tiefenbeck | |

Abstract | The lecture covers the role of ICT for sustainable energy usage. It starts out with a general background on the current landscape of energy generation and consumption and outlines concepts of the emerging smart grid. The lecture combines technologies from ubiquitous computing and traditional ICT with socio-economic and behavioral aspects and illustrates them with examples from actual applications. | |||||

Objective | Participants become familiar with the diverse challenges related to sustainable energy usage, understand the principles of a smart grid infrastructure and its applications, know the role of ubiquitous computing technologies, can explain the challenges regarding security and privacy, can reflect on the basic cues to induce changes in consumer behavior, develop a general understanding of the effects of a smart grid infrastructure on energy efficiency. Participants will apply the learnings to two course-accompanying projects, which include both programming and data analysis. The lecture further includes interactive exercises, case studies and practical examples. | |||||

Content | - Background on energy generation and consumption; characteristics, potential, and limitations of renewable energy sources - Introduction to energy economics - Smart grid and smart metering infrastructures, virtual power plants, security challenges - Demand management and home automation using ubiquitous computing technologies - Changing consumer behavior with smart ICT - Benefits and challenges of a smart energy system - Smart heating, electric mobility | |||||

Literature | Will be provided during the course, though a good starting point is "ICT for green: how computers can help us to conserve energy" from Friedemann Mattern, Thosten Staake, and Markus Weiss (available at Link). | |||||

263-3850-00L | Informal Methods | W | 4 credits | 2G + 1A | D. Cock | |

Abstract | Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code. | |||||

Objective | This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and therby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems. The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work. | |||||

Content | This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch. Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one). |

- Page 1 of 2 All