Search result: Catalogue data in Autumn Semester 2018
Materials Science Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-0261-GUL | Analysis I | O | 8 credits | 5V + 3U | A. Steiger | |
Abstract | Differential and integral calculus for functions of one and several variables; vector analysis; ordinary differential equations of first and of higher order, systems of ordinary differential equations; power series. The mathematical methods are applied in a large number of examples from mechanics, physics and other areas which are basic to engineering. | |||||
Objective | Introduction to the mathematical foundations of engineering sciences, as far as concerning differential and integral calculus. | |||||
Literature | U. Stammbach: Analysis I/II | |||||
Prerequisites / Notice | Die Übungsaufgaben (inkl. Multiple Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung. Es wird erwartet, dass Sie mindestens 75% der wöchentlichen Serien bearbeiten und zur Korrektur einreichen. | |||||
401-0151-00L | Linear Algebra ![]() | O | 5 credits | 3V + 2U | V. C. Gradinaru | |
Abstract | Contents: Linear systems - the Gaussian algorithm, matrices - LU decomposition, determinants, vector spaces, least squares - QR decomposition, linear maps, eigenvalue problem, normal forms - singular value decomposition; numerical aspects; introduction to MATLAB. | |||||
Objective | Einführung in die Lineare Algebra für Ingenieure unter Berücksichtigung numerischer Aspekte | |||||
Lecture notes | K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002 | |||||
Literature | K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002 | |||||
529-3001-02L | Chemistry I | O | 4 credits | 2V + 2U | C. Padeste, P. J. Walde, W. R. Caseri | |
Abstract | General Chemistry I: Stoichiometry, atoms, molecules, chemical bond and molecular structure, gases, solutions, chemical equilibrium, solubility, acids and bases, electrochemistry, thermodynamics, kinetics. | |||||
Objective | Introduction to general and inorganic chemistry. | |||||
Content | 1) Atoms, molecules, periodic table of the elements 2) Stoichiometry: Mole, chemical equations, elemental analyses 3) Reactions in water, stoichiometry in solutions 4) Thermochemistry: Energy and enthalpy, thermochemical equations, Hess theorem 5) Gases: Gas laws, reactions and stoichiometry in the gas phase, kinetic theory 6) Atomic structure and binding models: ionic, covalent and metallic bonds, Lewis- and resonance formula, electronegativity and polarity, VSEPR model 7) Liquids and solids, phase transitions 8) Solutions; dissolution processes, colligative properties 9) Kinetics: reaction rates, temperature dependence, reaction orders and reaction laws, collision theory, catalysis 10) Chemical equilibria: Equilibrium constants, activity and concentration, Le Chatelier's principle. 11) Acid-base equilibria: acid/base-concepts, pH calculations, buffer systems, titrations 12) Equilibria of dissolution and precipitation reactions 13) Thermodynamics: The three laws of thermodynamics, free enthalpy and equilibrium 14) Complexes: equilibria, structure and isomerism 15) Redox reactions and electrochemistry: Faraday's laws, electrode potential, Nernst equation | |||||
Lecture notes | Folienskript wird jeweils vor den Vorlesungsstunden als PDF versandt. | |||||
Literature | Peter W. Atkins, Loretta Jones. Chemie - einfach alles, 2. Auflage, Wiley-VCH (2006) Weinheim, ISBN 978-3-527-31579-6 Charles E. Mortimer, Ulrich Müller, Johannes Beck. Chemie; Das Basiswissen der Chemie. 12., Auflage; Thieme (2015); ISBN 978-3-13-484312-5. | |||||
327-0103-00L | Introduction to Materials Science | O | 3 credits | 3G | M. Niederberger, L. Heyderman, N. Spencer, P. Uggowitzer | |
Abstract | Fundamental knowledge and understanding of the atomistic and macroscopic concepts of material science. | |||||
Objective | Basic concepts in materials science. | |||||
Content | Contents: Atomic structure Atomic bonds Crystalline structure, perfection - imperfection Thermodynamics and phase diagrams Diffusion Mechanical properties Electric, magnetic and optical properties of materials Surfaces Materials ageing and failure | |||||
Literature | James F. Shackelford Introduction to Materials Science for Engineers 5th Ed., Prentice Hall, New Jersey, 2000 | |||||
327-0104-00L | Crystallography | O | 3 credits | 2V + 1U | T. Lottermoser | |
Abstract | Introduction into the fundamental relationships between chemical composition, crystal structure, symmetry and physical properties of solids. | |||||
Objective | Introduction into the fundamental relationships between chemical composition, crystal structure, symmetry and physical properties of solids. Emphasis: group-theoretical introduction into symmetry, discussion of the factors governing the formation of crystal structures, structural dependence of physical properties, fundamentals of experimental techniques probing the crystal structure. | |||||
Content | Symmetry and order: lattices, point groups, space groups. Crystal chemistry: geometrical, physical and chemical factors governing the formation of crystal structures; close sphere packings; typical basic crystal structures; lattice energy; magnetic crystals; quasicrystals. Structure/property relationships: Example quartz (piezoelectricity); perowskite and derivative structures (ferroelectrics and high-temperature superconductors); magnetic materials. Materials characterization: diffraction techniques, optical techniques. | |||||
Lecture notes | A script of the lecture until 2014 is available. Script notes for the present lecture will be provided before the start of the lecture. | |||||
Literature | Walter Borchardt-Ott: Kristallographie. Springer 2002. Dieter Schwarzenbach: Kristallographie. Springer 2001. | |||||
Prerequisites / Notice | Organisation: Two hours of lectures per week accompanied by one hour of exercises. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
327-0105-00L | Introduction to Scientific Practice for Material Scientists ![]() | O | 2 credits | 2G | S. Morgenthaler Kobas, M. B. Willeke | |
Abstract | The students obtain a first instight into the world of materials research and are introduced to the scientific method, as it is applied in materials research and industry. The students practise acquiring, analysing and synthesising scientific information and data, and communicating their findings in written and oral form. | |||||
Objective | Learning Objectives: The students - can protocol lab experiments correctly in a lab journal. - can analyze and present data efficiently. - can write lab reports according to standard scientific criteria. - are familiar with key rhetorical and communication rules for oral presentations. - can create effective oral presentations on scientific content. | |||||
Content | Laborjournal führen Datenauswertung Berichte schreiben Präsentationstechnik Prüfungsvorbereitung | |||||
Lecture notes | Handouts werden laufend abgegeben. | |||||
Prerequisites / Notice | Koordiniert mit der Lehrveranstaltung "Praktikum I & II". | |||||
327-0111-00L | Practical Laboratory Course I ![]() ![]() | O | 6 credits | 6P | M. B. Willeke, M. R. Dusseiller, S. Morgenthaler Kobas, P. J. Walde | |
Abstract | Practical introduction into concepts and basic principles of Materials Science and Chemistry. To become acquainted with important chemical and physical methods as well as lab safety issues. | |||||
Objective | Practical introduction into concepts and basic principles of Materials Science and Chemistry. To become acquainted with important chemical and physical methods. Close collaboration with the course "Wissenschaftliches Arbeiten" (planning of experiments, writing reports, techniques for oral presentations). General theoretical and practical introduction at the beginning of the practical laboratory course about safety and general behaviour in a laboratory. There will be an written lab safety test (with Moodle), which has to be passed before the practical course starts. | |||||
Content | Experiments in the field of synthetic and analytical chemistry; fracture mechanics, mechanical/thermal properties (e.g. E-module), thermodynamics, colloidal chemistry, particle tracking (DLS and microscopy), corrosion, electroplating, "forging, stone and wood processing", up to two computer theory experiments (using MATLAB; random numbers and traveling salesman), and further. | |||||
Lecture notes | The lab manual and further information for each experiment (aim of the experiment, theory, experimental procedure, data analysis) can be downloaded from the web (https://praktikum.mat.ethz.ch bzw. https://www.mat.ethz.ch/studies/bachelor/laborpraktische-ausbildung.html ). | |||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
529-0051-00L | Analytical Chemistry I | O | 3 credits | 3G | D. Günther, M.‑O. Ebert, G. Schwarz, R. Zenobi | |
Abstract | Introduction into the most important spectroscopical methods and their applications to gain structural information. | |||||
Objective | Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications | |||||
Content | Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods: Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements. NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling. IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy. UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD). Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation. | |||||
Lecture notes | Script will be for the production price | |||||
Literature | - R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; - D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996; - M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995 - E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001- Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1. | |||||
Prerequisites / Notice | Excercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended. | |||||
327-0309-00L | Organic Chemistry in Materials Science | O | 2 credits | 1G | W. R. Caseri, P. J. Walde | |
Abstract | This lecture allows the students to consolidate the basics of organic chemistry through selected exercises. | |||||
Objective | Consolidation of the basics of organic chemistry. | |||||
Content | This lecture consists predominantly of exercises and serves mainly to prepare the students intensively for aspects in materials science, based on the lecture Chemie II. A large number of questions will be provided, which will partially be discussed in the lecture while the other part is devoted to self-study. | |||||
402-0041-00L | Physics II | O | 7 credits | 4V + 2U | Y. M. Acremann, D. Pescia | |
Abstract | The course treats the fundamental aspects of modern Electronics, Quantum mechanics and Atomic physics. | |||||
Objective | Ziel dieser Vorlesung ist es, die grundlegenden Experimente zu kennen sowie die dazugehörende Theorie zu verstehen und sie in einfachen Problemstellungen zur Anwendung zu bringen. | |||||
Content | Die Vorlesung ''Physik II'' ist eine Einführung in die Grundlage der modernen Elektrotechnik, der Quantenmechanik und Atomphysik. Inhalt: - Einfache analoge und digitale Schaltungen - Die Notwendigkeit der Quantenmechanik (Atome und Atomspektren, Das Atommodell von J.J. Thomson und E. Rutherford, Die Photonenhypothese von A. Einstein und das Atommodell von Bohr, Der Tunneleffekt, Die Anomalie der spezifischen Wärme und das Auftreten von Magnetismus in der Materie ) - Die Postulate der Wellenmechanik. - Eindimensionale Probleme (Teilchen im Kasten, Der Tunneleffekt, Der QM harmonische Oszillator) - Bewegung im Zentralfeld - Der Drehimpulsoperator (Darstellung von Zuständen und Operatoren, Matrixdarstellung des Drehimpulsoperators, Das Stern-Gerlach Experiment: der Spin, Die Addition von Drehimpulsen in der Quantenmechanik) - Atomphysik (Die Spin-Bahn Kopplung, Der Hamilton-Operator der Spin-Bahn Wechselwirkung, Störungsrechnung für stationäre Zustände mit diskretem Spektrum, Anwendung der Störungstheorie: die Feinstrukturaufspaltung der atomaren Energieniveaus, Ein Atom im äusseren Magnetfeld: Zeeman-Effekt, Die Hyperfeinstruktur der s-Zustände) -Mehr-Teilchen Systeme (Das Energiespektrum des He-Atoms, Angeregte Zustände des Heliumatoms, Das Mendelejewsche Periodensystem, Spektralterme) -Übergang in Folge einer zeitabhängigen, periodischen Störung (Magnetische Resonanz (I. Rabi, Phys. Rev. 51, 652 (1937), Nobel Preis 1944), Verallgemeinerung der Rabi Formel auf Übergänge in Folge einer zeitabhängigen, periodischen Störung) | |||||
Lecture notes | Ein Skript wird verteilt. | |||||
Prerequisites / Notice | Prerequisites: Physics I. | |||||
551-0015-00L | Biology I | O | 2 credits | 2V | R. Glockshuber, E. Hafen | |
Abstract | The lecture Biology I, together with the lecture Biology II in the following summer semester, is a basic, introductory course into Biology for Students of Materials Sciences and other students with biology as subsidiary subject. | |||||
Objective | The goal of this course is to give the students a basic understanding of the molecules that build a cell and make it function, and the basic principles of metabolism and molecular genetics. | |||||
Content | Die folgenden Kapitelnummern beziehen sich auf das der Vorlesung zugrundeliegende Lehrbuch "Biology" (Campbell & Rees, 10th edition, 2015) Kapitel 1-4 des Lehrbuchs werden als Grundwissen vorausgesetzt 1. Aufbau der Zelle Kapitel 5: Struktur und Funktion biologischer Makromoleküle Kapitel 6: Eine Tour durch die Zelle Kaptiel 7: Membranstruktur und-funktion Kapitel 8: Einführung in den Stoffwechsel Kapitel 9: Zelluläre Atmung und Speicherung chemischer Energie Kapitel 10: Photosynthese Kapitel 12: Der Zellzyklus Kapitel 17: Vom Gen zum Protein 2. Allgemeine Genetik Kapitel 13: Meiose und Reproduktionszyklen Kapitel 14: Mendel'sche Genetik Kapitel 15: Die chromosomale Basis der Vererbung Kapitel 16: Die molekulare Grundlage der Vererbung Kapitel 18: Genetik von Bakterien und Viren Kapitel 46: Tierische Reproduktion Grundlagen des Stoffwechsels und eines Überblicks über molekulare Genetik | |||||
Lecture notes | Der Vorlesungsstoff ist sehr nahe am Lehrbuch gehalten, Skripte werden ggf. durch die Dozenten zur Verfügung gestellt. | |||||
Literature | Das folgende Lehrbuch ist Grundlage für die Vorlesungen Biologie I und II: „Biology“, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4 | |||||
Prerequisites / Notice | Zur Vorlesung Biologie I gibt es während der Prüfungssessionen eine einstündige, schriftliche Prüfung. Die Vorlesung Biologie II wird separat geprüft. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
401-0603-00L | Stochastics (Probability and Statistics) ![]() | O | 4 credits | 2V + 1U | M. H. Maathuis | |
Abstract | This class covers the following concepts: random variables, probability, discrete and continuous distributions, joint and conditional probabilities and distributions, the law of large numbers, the central limit theorem, descriptive statistics, statistical inference, inference for normally distributed data, point estimation, and two-sample tests. | |||||
Objective | Knowledge of the basic principles of probability and statistics. | |||||
Content | Introduction to probability theory, some basic principles from mathematical statistics and basic methods for applied statistics. | |||||
Lecture notes | Lecture notes | |||||
Literature | Lecture notes | |||||
401-0363-10L | Analysis III ![]() | O | 3 credits | 2V + 1U | A. Iozzi | |
Abstract | Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics. | |||||
Objective | Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations. The first lecture is on Thursday, September 27 13-15 in HG F 7 and video transmitted into HG F 5. The reference web-page for exercise sheets, solutions and further info is https://metaphor.ethz.ch/x/2018/hs/401-0363-10L/ The web-page to enroll for an exercise class is https://echo.ethz.ch The coordinator is Stefano D'Alesio https://www.math.ethz.ch/the-department/people.html?u=dalesios Study Center D-MAVT: 16-18 every Monday from the 3rd week of the semester (first appointment: October the 1st) room HG E22 Link Study Center D-MATL: 15-17 every Wednesday from the 5th week of the semester (first appointment: October the 17th) room HCI J 574 Ferienpräsenz: Tuesday 15 January 2019, at 12:30-14:00, in room HG G 19.1. Monday 21 January 2019, at 12:30-14:00, in room HG G 19.2. Prüfungseinsicht: Tuesday 26 February 2019, at 17:00-18:30, in room HG 19.1. Monday 4 March 2019, at 18:15-19:45, in room HG 19.1. | |||||
Content | Laplace Transforms: - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting - Transforms of Derivatives and Integrals, ODEs - Unit Step Function, t-Shifting - Short Impulses, Dirac's Delta Function, Partial Fractions - Convolution, Integral Equations - Differentiation and Integration of Transforms Fourier Series, Integrals and Transforms: - Fourier Series - Functions of Any Period p=2L - Even and Odd Functions, Half-Range Expansions - Forced Oscillations - Approximation by Trigonometric Polynomials - Fourier Integral - Fourier Cosine and Sine Transform Partial Differential Equations: - Basic Concepts - Modeling: Vibrating String, Wave Equation - Solution by separation of variables; use of Fourier series - D'Alembert Solution of Wave Equation, Characteristics - Heat Equation: Solution by Fourier Series - Heat Equation: Solutions by Fourier Integrals and Transforms - Modeling Membrane: Two Dimensional Wave Equation - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series - Solution of PDEs by Laplace Transform | |||||
Lecture notes | Lecture notes by Prof. Dr. Alessandra Iozzi: https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA | |||||
Literature | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011 C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed. S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY. G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005 For reference/complement of the Analysis I/II courses: Christian Blatter: Ingenieur-Analysis https://people.math.ethz.ch/~blatter/dlp.html | |||||
327-0308-00L | Programming Techniques in Materials Science ![]() | O | 2 credits | 2G | C. Ederer | |
Abstract | This course introduces the general computing and programming skills which are necessary to perform numerical computations and simulations in materials science. This is achieved using the numerical computing environment Matlab and through the use of many practical examples and exercises. | |||||
Objective | On passing this course, the students should be able to develop their own programs for performing numerical computations and simulations, and they should be able to analyse and amend existing code. | |||||
Content | Introduction to Matlab; input/output; structured programming using loops and conditional execution; modular Programming using functions; flow diagrams; numerical accuracy; example: random walk model. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
327-0301-00L | Materials Science I | O | 3 credits | 3G | J. F. Löffler, R. Schäublin, A. R. Studart, P. Uggowitzer | |
Abstract | Basic concepts of metal physics, ceramics, polymers and their technology. | |||||
Objective | Based on the lecture 'Introduction to Materials Science' this lecture aims to give a detailed understanding of important aspects of materials science, with special emphasis on metallic and ceramic materials. | |||||
Content | Thermodynamics and phase diagrams, crystal interfaces and microstructure, diffusional transformations in solids, and diffusionless transformations will be presented for metallic alloys. The basics of the ionic and covalent chemical bonds, the bond energy, the crystalline structure, four important structural ceramics, and the properties of glasses and glass ceramics will be presented for ceramic materials. | |||||
Lecture notes | For metals see: http://www.metphys.mat.ethz.ch/education/lectures/materialwissenschaft-i.html For ceramics see: http://www.complex.mat.ethz.ch/education/lectures.html | |||||
Literature | Metals: D. A. Porter, K. E. Easterling Phase Transformations in Metals and Alloys - Second Edition ISBN : 0-7487-5741-4 Nelson Thornes Ceramics: - Munz, D.; Fett, T: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, - Askeland & Phulé: Science and Engineering of Materials, 2003 - diverse CEN ISO Standards given in the slides - Barsoum MW: Fundamentals of Ceramics: - Chiang, Y.M.; Dunbar, B.; Kingery, W.D; Physical Ceramics, Principles für Ceramic Science and Engineering. Wiley , 1997 - Hannik, Kelly, Muddle: Transformation Toughening in Zirconia Containing Ceramics, J Am Ceram Soc 83 [3] 461-87 (2000) - "High-Tech Ceramics: viewpoints and perspectives", ed G. Kostorz, Academic Press, 1989. Chapter 5, 59-101. - "Brevieral Ceramics" published by the "Verband der Keramischen Industrie e.V.", ISBN 3-924158-77-0. partly its contents may be found in the internet @ http://www.keramverband.de/brevier_engl/brevier.htm or on our homepage - Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003, - Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 3. Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986 - Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie, The Journal of Physical Chemistry, 1978 - Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975, Springer - Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992 - "Formation of beta -Si sub 3 N sub 4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si sub 3 N sub 4 , AlN, Al sub 2 O sub 3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980. - Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, Springer-Verlag, 1984, pp. 329, 1984 9. | |||||
Prerequisites / Notice | - In the first part of the lecture the bases are obtained for metals. In the second part the basics of cermics will be presented. - One part of the lecture will be taught in English, but most of it in German. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
327-0311-00L | Practical Laboratory Course III ![]() ![]() | O | 3 credits | 6P | M. B. Willeke, C. Battaglia, A. Borgschulte, P. J. Walde | |
Abstract | To impart basic knowledge and experimental competence using selected examples from chemistry and physics. | |||||
Objective | To impart basic knowledge and experimental competence using selected examples from chemistry and physics. | |||||
Content | Chemistry III: Synthesis of PMMA via Transesterification; manufacture of poly(methylmethacrylat) via radical polymerization of methylmethacrylat; 3D-printing. Physics I: Powder diffractometry, single crystal radiography, capillary rheometry, viscoelasticity of the polymer melt (or an equivalent exp.), 2 phyiscs experiments (out of 4) at the EMPA: e.g. X-ray flourescence analysis, impedance measurements of batteries, "power to gas" or texture measurement, building a Lithium ionic battery; and two further physic experiments at D-Phys (e.g. about "elastic constants" or "inference and diffraction" ). | |||||
Lecture notes | Notes with information for each experiment (aim of the experiment, theory, experimental procedure, data analysis) can be downloaded from the web (https://praktikum.mat.ethz.ch or https://www.mat.ethz.ch/studies/bachelor/laborpraktische-ausbildung.html). | |||||
Prerequisites / Notice | Voraussetzungen: 1. Erfolgreiche Teilnahme sowohl am D-MATL Praktikum I als auch II. 2. Bestandene Chemie I/II Prüfung und/oder bestandene Basisprüfung. Über allfällige Ausnahmen entscheidet der Praktikumsverantwortliche auf Anfrage. | |||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
327-0504-00L | Materials Characterisation Methods ![]() | O | 3 credits | 2V + 1U | L. Heyderman | |
Abstract | The lecture course is aimed to qualifying the student to choose the optimum characterization method according to the questions posed. The main topics are: Thermal Analysis (TD, TG, TM, DTA, DSC), light microscopy, diffraction methods (XRD, NRD, SAD), electron microscopy (TEM, HRTEM, STEM, HAADF-STEM, SEM, ESEM, EFEM, EDX, EELS). | |||||
Objective | The lecture course is aimed to qualifying the student to choose the optimum characterization method according to the questions posed. | |||||
Content | Introduction into the fundamentals of materials characterization: Thermal Analysis (TD, TG, TM, DTA, DSC), light microscopy, diffraction methods (XRD, NRD, SAD), electron microscopy (TEM, HRTEM, STEM, HAADF-STEM, SEM, ESEM, EFEM, EDX, EELS). The emphasis is on the discussion of the fundamentals of these characterization methods. | |||||
Lecture notes | Script is provided. | |||||
Literature | Materials Science and technology: A comprehensive treatment. ed. by R. W. Cahn, P. Haasen, E.J. Kramer. VCH Weinheim 1992, 1994. Volume 2 Characterization of Materials (Volume Editor E. Lifshin). | |||||
327-0508-00L | Simulation Techniques in Materials Science ![]() | O | 4 credits | 2V + 2U | C. Ederer | |
Abstract | Introduction to simulation techniques that are relevant for material science. Simulation methods for continua (finite differences, finite elements), mesoscopic methods (cellular automata, mesoscopic Monte Carlo methods), microscopic methods (Molecular Dynamics, Monte-Carlo simulations, Density Functional Theory). | |||||
Objective | Learn techniques which are used in the computer-based study of the physics of materials; Obtain an overview of which simulation techniques are useful for which type of problems; develop the capability to transform problems in materials science into a form suitable for computer studies, including writing the computer program and analyzing the results. | |||||
Content | - Modeling and simulation techniques in materials science. - Simulation methods for continua (finite differences, basic idea of finite elements). - Mesoscopic methods (Cellular automata, phase-field models, mesoscopic Monte Carlo methods). - Microscopic methods (Molecular dynamics, Monte-Carlo simulation for many-particle systems, basic idea of density functional theory). | |||||
Literature | - R. Lesar, Introduction to Computational Materials Science (Cambridge University Press 2013). - D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic Press 2002). - M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987). - D. Raabe, Computational Materials Science (Wiley-VCH 1998). | |||||
327-0407-01L | Materials Physics I ![]() | O | 5 credits | 3V + 2U | P. Gambardella | |
Abstract | This course introduces classical and quantum mechanical concepts for the understanding of material properties from a microscopic point of view. The lectures focus on the static and dynamic properties of crystals, the formation of chemical bonds and electronic bands in metals, and semiconductors, and on the thermal and electrical properties that emerge from this analysis. | |||||
Objective | Providing physical concepts for the understanding of material properties: Understanding the electronic properties of solids is at the heart of modern society and technology. The aim of this course is to provide fundamental concepts that allow the student to relate the microscopic structure of matter and the quantum mechanical behavior of electrons to the macroscopic properties of materials. Beyond fundamental curiosity, such level of understanding is required in order to develop and appropriately describe new classes of materials for future technology applications. By the end of the course the student should have developed a semi-quantitative understanding of basic concepts in solid state physics and be able to appreciate the pertinence of different models to the description of specific material properties. | |||||
Content | PART I: Structure of solid matter, real and reciprocal space The crystal lattice, Bravais lattices, primitive cells and unit cells, Wigner-Seitz cell, primitive lattice vectors, lattice with a basis, examples of 3D and 2D lattices. Fourier transforms and reciprocal space, reciprocal lattice vectors, Brillouin zones Elastic and inelastic scattering of elementary particles with matter (x-rays, neutrons, electrons). Interaction of x-rays with matter. X-ray diffraction, Bragg condition, atomic scattering factors, scattering length, absorption and refraction. PART II: Dynamics of atoms in crystals Lattice vibrations and phonons in 1D, phonons in 1D chains with monoatomic basis, phonon in 1D chains with a diatomic basis, optical and acoustic modes, phase and group velocities, phonon dispersion and eigenvectors. Phonons in 2D and 3D. Quantum mechanical description of lattice waves in solids, the harmonic oscillator, the concept of phonon, phonon statistics, Bose-Einstein distribution, phonon density of states, Debye and Einstein models, thermal energy, heat capacity of solids. PART III: Electron states and energy bands in crystalline solids Electronic properties of materials, classical concepts: electrical conductivity, Hall effect, thermoelectric effects. Drude model. Transition to quantum models and review of quantum mechanical concepts. The formation of electronic bands: from molecules to periodic crystal structures. The free electron gas: Fermi statistics, Fermi energy and Fermi surface, density of states in k-space and as a function of energy. Inadequacy of the free electron model. Electrons in a periodic potential, Bloch's theorem and Bloch functions, electron Bragg scattering, nearly free electron model, physical origin of bandgaps, band filling. Energy bands of different types of solids: metals, insulators, and semiconductors. Fermi surfaces. Examples. PART IV: Electrical and heat conduction Dynamics of electrons in energy bands, phase and group velocity, crystal momentum, the effective mass concept, scattering phenomena. Electrical and thermal conductivities revisited. Electron transport due to electric fields (drift) and concentration gradients (diffusion). Einstein's relations. Transport of heat by electrons, Seebeck effect and thermopower, Peltier effect, thermoelectric cooling, thermoelectric energy conversion. PART V: Semiconductors: concepts and devices Band structure: valence and conduction states. Intrinsic and extrinsic charge carrier density. Electrical conductivity. p-n junctions. Metal-semiconductor contacts. FET transistors. Transistors as switches and amplifiers. | |||||
Lecture notes | in English, available for download at http://www.intermag.mat.ethz.ch/education.html | |||||
Literature | C. Kittel, Introduction to Solid State Physics (Wiley, 2005), also printed in German. General text that covers most arguments from the point of view of condensed matter physics. S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, 2006). General text that covers most arguments from the point of view of materials science. L. Solymar, D. Walsh, R.R.A. Syms, Electrical Properties of Materials (Oxford Univ. Press, 2014). Modern treatment of the electronic properties of materials, with examples of applications. The thermal properties of solids are not included. J. Livingston, Electronic Properties of Engineering Materials (Wiley, 1999). Good text for providing intuitive understanding and perspectives. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2012). General treatment of semiconductor physics and devices, including both basic and more advanced topics. H. Ibach, H. Lueth, Solid-State Physics (Springer, 2003), available free of charge as ebook from the ETH library, also in German. General text that covers most arguments from the point of view of condensed matter physics. | |||||
Prerequisites / Notice | Physics I and II. Knowledge of basic quantum mechanical concepts. The lecture will be given in English. The script will be available in English. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
327-0501-00L | Metals I | O | 3 credits | 2V + 1U | R. Spolenak | |
Abstract | Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms. | |||||
Objective | Repetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms. | |||||
Content | Dislocation theory: Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations Hardening theory: a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys b. particle hardening: case studies on aluminium-copper alloys High temperature plasticity: thermally activated glide power-law creep diffusional creep: Coble, Nabarro-Herring deformation mechanism maps Case studies in turbine blades superplastizity alloying effects | |||||
Literature | Gottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag Haasen, Physikalische Metallkunde, Springer Verlag Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann Courtney, Mechanical Behaviour of Materials, McGraw-Hill |
Page 1 of 2
All