Suchergebnis: Katalogdaten im Herbstsemester 2018

Elektrotechnik und Informationstechnologie Master Information
Master-Studium (Studienreglement 2008)
Fächer der Vertiefung
Insgesamt 42 KP müssen im Masterstudium aus Vertiefungsfächern erreicht werden. Der individuelle Studienplan unterliegt der Zustimmung eines Tutors.
Energy and Power Electronics
Empfohlene Fächer
Diese Fächer sind eine Empfehlung. Sie können Fächer aus allen Vertiefungsrichtungen wählen. Sprechen Sie mit Ihrem Tutor.
NummerTitelTypECTSUmfangDozierende
227-0101-00LDiscrete-Time and Statistical Signal ProcessingW6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
LernzielThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Inhalt1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
SkriptLecture Notes
227-0121-00LKommunikationssysteme Information W6 KP4GA. Wittneben
KurzbeschreibungInformationstheorie, Signalraumanalyse, Basisbandübertragung, Passbandübertragung, Systembeispiel und Kanal, Sicherungsschicht, MAC, Beispiele Layer 2, Layer 3, Internet
LernzielZiel der Vorlesung ist die Einführung der wichtigsten Konzepte und Verfahren, die in modernen digitalen Kommunikationssystemen Anwendung finden, sowie eine Übersicht über bestehende und zukünftige Systeme.
InhaltEs werden die untersten drei Schichten des OSI-Referenzmodells behandelt: die Bitübertragungsschicht, die Sicherungsschicht mit dem Zugriff auf das Übertragungsmedium und die Vermittlung. Die wichtigsten Begriffe der Informationstheorie werden eingeführt. Anschliessend konzentrieren sich die Betrachtungen auf die Verfahren der Punkt-zu-Punkt-Übertragung, welche sich mittels der Signalraumdarstellung elegant und kohärent behandeln lassen. Den Methoden der Fehlererkennung und –korrektur, sowie Protokollen für die erneute Übermittlung gestörter Daten wird Rechnung getragen. Auch der Vielfachzugriff bei geteiltem Übertragungsmedium wird diskutiert. Den Abschluss bilden Algorithmen für das Routing in Kommunikationsnetzen und der Flusssteuerung.

Die Anwendung der grundlegenden Verfahren wird ausführlich anhand von bestehenden und zukünftigen drahtlosen und drahtgebundenen Systemen erläutert.
SkriptVorlesungsfolien
Literatur[1] Simon Haykin, Communication Systems, 4. Auflage, John Wiley & Sons, 2001
[2] Andrew S. Tanenbaum, Computernetzwerke, 3. Auflage, Pearson Studium, 2003
[3] M. Bossert und M. Breitbach, Digitale Netze, 1. Auflage, Teubner, 1999
227-0225-00LLinear System TheoryW6 KP5GM. Kamgarpour
KurzbeschreibungThe class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems.
LernzielStudents should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems.
Inhalt- Proof techniques and practices.
- Linear spaces, normed linear spaces and Hilbert spaces.
- Ordinary differential equations, existence and uniqueness of solutions.
- Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case.
- Controllability and observability, duality. Time invariant systems treated as a special case.
- Stability and stabilization, observers, state and output feedback, separation principle.
SkriptAvailable on the course Moodle platform.
Voraussetzungen / BesonderesSufficient mathematical maturity with special focus on logic, linear algebra, analysis.
227-0517-00LElectrical Drive Systems IIW6 KP4GP. Steimer, G. Scheuer, C. A. Stulz
KurzbeschreibungIn "Antriebssysteme II" werden die Leistungshalbleiter repetiert. Der Aufbau von Umrichtern durch die Kombination von Schaltern/Zellen mit Topologien wird erläutert. Der 3-Punkt-Pulsumrichters mit seinen Schalt- und Transferfunktionen wird vertieft betrachtet. Weitere Schwerpunkte sind die Regelung der Synchronmaschine, von netzseitigen Stromrichtern und Probleme von umrichtergespeisten Maschinen
LernzielDie Studierenden erwerben ein vertieftes Verständnis in Bezug auf die Auslegung der Hauptkomponenten eines kompletten Antriebssystemes, der wesentlichen Interaktionen mit dem Netz bzw. der elektrischen Maschine sowie der dazugehörigen Regelung.
InhaltUmrichtertopologien (Schalter oder Zellen basiert), höherpulsige Diodengleichrichter; Systemaspekte Transformer und elektrische Maschine; 3-Punkt-Pulsumrichter und seine Schalt- und Transferfunktionen; Netzrückwirkungen; Modellierung und Regelung der Synchronmaschine (auch Permanentmagneterregte); Regelung des netzseitigen Stromrichters; Reflexionseffekte beim Einsatz von Leistungskabeln, Isolations- und Lagerbeanspruchung. Exkursion zu ABB Semiconductors.
SkriptWird zu Beginn der Vorlesung verkauft oder kann von Ilias geladen werden.
LiteraturVorlesungsskript; Fachliteratur wird im Skript erwähnt.
Voraussetzungen / BesonderesVoraussetzungen: Elektrische Antriebssysteme I (empfohlen), Grundlagen in Elektrotechnik, Leistungselektronik, Automatik und Mechatronik.
227-0523-00LEisenbahn-Systemtechnik IW6 KP4GM. Meyer
KurzbeschreibungGrundlagen der Eisenbahnfahrzeuge und ihr Zusammenspiel mit der Bahninfrastruktur:
- Zugförderungsaufgaben und Fahrzeugarten
- Fahrdynamik
- Mechanischer Aufbau der Eisenbahnfahrzeuge
- Bremssysteme
- Antriebsstrang und Hilfsbetriebeversorgung
- Bahnstromversorgung
- Sicherungsanlagen
- Betriebsleitung und Unterhalt
Lernziel- Überblick über die technischen Eigenschaften von Eisenbahnsystemen
- Kenntnisse über den Aufbau der Eisenbahnfahrzeuge
- Verständnis für die Abhängigkeiten verschiedenster Ingenieur-Disziplinen in einem vielfältigen System (Mechanik, Elektro- und Informationstechnik, Verkehrstechnik)
- Verständnis für die Aufgaben und Möglichkeiten eines Ingenieurs in einem stark von wirtschaftlichen und politischen Randbedingungen geprägten Umfeld
- Einblick in die Aktivitäten der Schienenfahrzeug-Industrie und der Bahnen in der Schweiz
- Begeisterung des Ingenieurnachwuchses für die berufliche Tätigkeit im Bereich Schienenverker und Schienenfahrzeuge
InhaltEST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

1 Einführung:
1.1 Geschichte und Struktur des Bahnsystems
1.2 Fahrdynamik

2 Vollbahnfahrzeuge:
2.3 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion
2.2 Bremsen
2.3 Traktionsantriebssysteme
2.4 Hilfsbetriebe und Komfortanlagen
2.5 Steuerung und Regelung

3 Infrastruktur:
3.1 Fahrweg
3.2 Bahnstromversorgung
3.3 Sicherungsanlagen

4 Betrieb:
4.1 Interoperabilität, Normen und Zulassung
4.2 RAMS, LCC
4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastreferate

Geplante Exkursionen:
Betriebszentrale SBB, Zürich Flughafen
Reparatur und Unterhalt, SBB Zürich Altstetten
Fahrzeugfertigung, Stadler Bussnang
SkriptAbgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.
Voraussetzungen / BesonderesDozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.
227-0567-00LDesign of Power Electronic SystemsW6 KP4GF. Krismer
KurzbeschreibungComplete design process: from given specifications to a complete power electronic system; selection / design of suitable passive power components; static and dynamic properties of power semiconductors; optimized EMI filter design; heat sink optimization; additional circuitry, e.g. gate driver; system optimization.
LernzielBasic knowledge of design and optimization of a power electronic system; furthermore, lecture and exercises thoroughly discuss key subjects of power electronics that are important with respect to a practical realization, e.g. how to select suitable power components, how to determine switching losses, calculation of high frequency losses, EMI filter design and realization, thermal considerations.
InhaltComplete design process: from given specifications to a complete power electronic system.
Selection and / or design of suitable passive power components: specific properties, parasitic components, tolerances, high frequency losses, thermal considerations, reliability.
Static and dynamic characteristics of power semiconductors.
Optimized design of the EMI filter.
Thermal characterization of the converter, optimized heat sink design.
Additional circuitry: gate driver, measurement, control.
Converter start up: typical sequence of events, circuitry required.
Overall system optimization: identifying couplings between different components of the considered power electronic system, optimization targets and issues.
SkriptLecture notes and complementary exercises including correct answers.
Voraussetzungen / BesonderesPrerequisites: Introductory course on power electronics.
227-0618-00LModeling, Characterization and Reliability of Power Semiconductors Information W6 KP4GM. P. M. Ciappa
KurzbeschreibungThis lecture provides theoretical and experimental knowledge on the techniques for the characterization and numerical modeling of power semiconductors, as well on the related built-in reliability strategies.
LernzielThe students shall get acquainted with the most important concepts and techniques for characterization, numerical modeling and built-in reliability of modern power semiconductor devices. This knowledge is intended to provide the future engineer with the theoretical background and tools for the design of dependable power devices and systems.
InhaltThis lecture consists of a theoretical part (50%) and of laboratory exercises and demonstrations (50%).
The theoretical part covers the basic techniques and procedures for characterization, modeling and built-in reliability of modern power semiconductor devices with special attention to MOS and IGBT. The starting part on technology provides an overview on the main device families and includes a review of the most relevant application-oriented aspects of the device physics, thermal management, and packaging. The second section deals with the basic experimental characterization techniques for the definition of the semiconductor material properties, electrical characteristics, safe operating area, and junction temperature of the devices. The following section introduces the basic principles for electrical, thermal, and electro-thermal simulation of power semiconductors by Technology Computed Aided Design (TCAD) and compact modeling. Finally, procedures are methods are presented to implement efficient built-in reliability programs targeted on power semiconductors. They include failure physics, dedicated failure analysis techniques, accelerated testing, defect screening, and lifetime modeling.
During the laboratory activities, selections of the experimental techniques presented in the lecture are demonstrated on the base of realistic examples. Furthermore, schematic power devices will be simulated by the students with advanced TCAD tools and circuit simulators.
SkriptHandouts to the lecture (approx. 250 pp.)
LiteraturEiichi Ohno: "Introduction to Power Electronics"
B. Murari et al.: "Smart Power ICs"
B. J. Baliga: "Physics Modern Power Devices"
S. K. Ghandi: "Semiconductor Power Devices"
227-0697-00LIndustrial Process ControlW4 KP3GM. Mercangöz, A. Horch
KurzbeschreibungIntroduction to process automation and its application in process industry and power generation
LernzielKnowledge of process automation and its application in industry and power generation
InhaltIntroduction to process automation: system architecture, data handling, communication (fieldbusses), process visualization, engineering, etc.
Analysis and design of open loop control problems: discrete automata, decision tables, petri-nets, drive control and object oriented function group automation philosophy, RT-UML.
Engineering: Application programming in IEC61131-3 (function blocks, sequence control, structured text); process visualization and operation; engineering integration from sensor, cabling, topology design, function, visualization, diagnosis, to documentation; Industry standards (e.g. OPC, Profibus); Ergonomic design, safety (IEC61508) and availability, supervision and diagnosis.
Practical examples from process industry, power generation and newspaper production.
SkriptSlides will be available as .PDF documents, see "Learning materials" (for registered students only)
Voraussetzungen / BesonderesExercises: Tuesday 15-16

Practical exercises will illustrate some topics, e.g. some control software coding using industry standard programming tools based on IEC61131-3.
227-0731-00LPower Market I - Portfolio and Risk ManagementW6 KP4GD. Reichelt, G. A. Koeppel
KurzbeschreibungPortfolio und Risiko Management für Energieversorgungsunternehmen, Europäischer Strommarkt und -handel, Terminkontrakte, Preisabsicherung, Optionen und Derivate, Kennzahlen für das Risikomanagement, finanztechnische Modellierung von Kraftwerken, grenzüberschreitender Stromhandel, Systemdienstleistungen, Regelenergiemarkt, Bilanzgruppenmodell
LernzielErwerb von umfassenden Kenntnissen über die weltweite Liberalisierung der Strommärkte, den internationalen Stromhandel sowie die Funktion von Strombörsen. Verstehen der Finanzprodukte (Derivate) basierend auf dem Strompreis. Abbilden des Portfolios aus physischer Produktion, Verträgen und Finanzprodukten. Beurteilen von Strategien zur Absicherung des Marktpreisrisikos. Beherrschen der Methoden und Werkzeuge des Risiko Managements.
Inhalt1. Europäischer Strommarkt und –handel
1.1. Einführung Stromhandel
1.2. Entwicklung des Marktes
1.3. Energiewirtschaft
1.4. Spothandel und OTC-Handel
1.5. Strombörse EEX

2. Marktmodell
2.1. Marktplatz und Organisation
2.2. Bilanzgruppenmodell / Ausgleichsenergie
2.3. Systemdienstleistungen
2.4. Regelenergiemarkt
2.5. Grenzüberschreitender Handel
2.6. Kapazitätsauktionen

3. Portfolio und Risiko Management
3.1. Portfoliomanagement 1 (Einführung)
3.2. Terminkontrakte (EEX Futures)
3.3. Risk Management 1 (m2m, VaR, hpfc, Volatilität, cVaR)
3.4. Risk Management 2 (PaR)
3.5. Vertragsbewertung (HPFC)
3.6. Portfoliomanagement 2
3.7. Risk Management 3 (Energiegeschäft)

4. Energie & Finance I
4.1. Optionen 1 – Grundlagen
4.2. Optionen 2 – Absicherungsstrategien
4.3. Einführung Derivate (Swaps, Cap, Floor, Collar)
4.4. Finanztechnische Modellierung von Kraftwerken
4.5. Wasserkraft und Handel
4.6. Anreizregulierung
SkriptHandouts mit den Folien der Vorlesung
Voraussetzungen / Besonderes1 Exkursion pro Semester, 2 Case Studies, externe Referaten für ausgewählte Themen.
Kurs Moodle: Link
227-0759-00LInternational Business Management for EngineersW3 KP2VW. Hofbauer
KurzbeschreibungGlobalization of markets increases global competition and requires enterprises to continuously improve their performance to sustainably survive. Engineers substantially contribute to the success of an enterprise provided they understand and follow fundamental international market forces, economic basics and operational business management.
LernzielThe goal of the lecture is to get a basic understanding of international market mechanisms and their consequences for a successful enterprise. Students will learn by practical examples how to analyze international markets, competition as well as customer needs and how they convert into a successful portfolio an enterprise offers to the global market. They will understand the basics of international business management, why efficient organizations and effective business processes are crucial for the successful survival of an enterprise and how all this can be implemented.
InhaltThe first part of the course provides an overview about the development of international markets, the expected challenges and the players in the market. The second part is focusing on the economic aspects of an enterprise, their importance for the long term success and how to effectively manage an international business. Based on these fundamentals the third part of the course explains how an innovative product portfolio of a company can be derived from considering the most important external factors and which consequences in respect of product innovation, competitive product pricing, organization and business processes emerge. Each part of the course includes practical examples to demonstrate the procedure.
SkriptA script is provided for this lecture.
Voraussetzungen / BesonderesThe lecture will be held in three blocks each of them on a Saturday. Each block will focus on one of the three main topics of the course. Between the blocks the students will work on specific case studies to deepen the subject matter. About two weeks after the third block a written examination will be conducted.
  •  Seite  1  von  1