Suchergebnis: Katalogdaten im Herbstsemester 2018

Mathematik Lehrdiplom Information
Detaillierte Informationen zum Studiengang auf: www.didaktischeausbildung.ethz.ch
Fachwiss. Vertiefung mit pädagogischem Fokus und weitere Fachdidaktik
NummerTitelTypECTSUmfangDozierende
401-3059-00LKombinatorik II
Findet dieses Semester nicht statt.
W4 KP2GN. Hungerbühler
KurzbeschreibungDer Kurs Kombinatorik I und II ist eine Einführung in die abzählende Kombinatorik.
LernzielDie Studierenden sind in der Lage, kombinatorische Probleme einzuordnen und die adaequaten Techniken zu deren Loesung anzuwenden.
InhaltInhalt der Vorlesungen Kombinatorik I und II: Kongruenztransformationen der Ebene, Symmetriegruppen von geometrischen Figuren, Eulersche Funktion, Cayley-Graphen, formale Potenzreihen, Permutationsgruppen, Zyklen, Lemma von Burnside, Zyklenzeiger, Saetze von Polya, Anwendung auf die Graphentheorie und isomere Molekuele.
401-3057-00LEndliche Geometrien IIW4 KP2GN. Hungerbühler
KurzbeschreibungEndliche Geometrien I, II: Endliche Geometrien verbinden Aspekte der Geometrie mit solchen der diskreten Mathematik und der Algebra endlicher Körper. Inbesondere werden Modelle der Inzidenzaxiome konstruiert und Schliessungssätze der Geometrie untersucht. Anwendungen liegen im Bereich der Statistik, der Theorie der Blockpläne und der Konstruktion orthogonaler lateinischer Quadrate.
LernzielEndliche Geometrien I, II: Die Studierenden sind in der Lage, Modelle endlicher Geometrien zu konstruieren und zu analysieren. Sie kennen die Schliessungssätze der Inzidenzgeometrie und können mit Hilfe der Theorie statistische Tests entwerfen sowie orthogonale lateinische Quadrate konstruieren. Sie sind vertraut mit Elementen der Theorie der Blockpläne.
InhaltEndliche Geometrien I, II: Endliche Körper, Polynomringe, endliche affine Ebenen, Axiome der Inzidenzgeometrie, Eulersches Offiziersproblem, statistische Versuchsplanung, orthogonale lateinische Quadrate, Transformationen endlicher Ebenen, Schliessungsfiguren von Desargues und Pappus-Pascal, Hierarchie der Schliessungsfiguren, endliche Koordinatenebenen, Schiefkörper, endliche projektive Ebenen, Dualitätsprinzip, endliche Möbiusebenen, selbstkorrigierende Codes, Blockpläne
Literatur- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.
401-0293-00LMathematik III Information W3 KP2V + 1UA. Caspar, N. Hungerbühler
KurzbeschreibungVertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und Einführung in die Systemanalyse und Modellbildung.
LernzielDie Studierenden

- verstehen Mathematik als Sprache zur Modellbildung und als Werkzeug zur Lösung angewandter Probleme in den Naturwissenschaften.
- können anspruchsolle Modelle analysieren, Lösungen qualitativ beschreiben oder allenfalls explizit berechnen: diskret/kontinuierlich in Zeit, Ebene und Raum.
- können Beispiele und konkrete arithmetische und geometrische Situationen aus Anwendungen mit Methoden der höheren Mathematik interpretieren und bearbeiten.
InhaltModellbildung

- Einführung und Beispiele
- Mehrdimensionale Modelle
- Pocken-Modell
- SIR-Modell

Lineare Modelle

- Vektorräume
- Diagonalisierbarkeit
- Normalformen
- Exponential einer Matrix
- Lösungsraum eines Linearen DGL-Systems

Fourier-Reihen

- Euklidische Vektorräume
- Orthogonale Projektion
- Anwendungen

Nichtlineare Modelle

- Stationäre Lösungen, Qualitative Aussagen
- Mehrdimensionale Modelle: Räuber-Beute, Lotka-Volterra

Partielle Differentialgleichungen

- Einführung, Repetition, Beispiele
- Fourier-Methoden: Wärmeleitung, Laplace, Wellengleichung,
Filter, Computertomographie

Laplace-Transformation

- Definition und Notation
- Rechenregeln
- Anwendungsbeispiele
SkriptSiehe Lernmaterial > Literatur
Literatur- Caspar, A. und Hungerbühler, N.: Mathematik III, Vorlesungsskript (siehe Polybox)
- Imboden, D. und Koch, S.: Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Springer (2008)
- Blatter, C.: Lineare Algebra für Ingenieure, Chemiker und Naturwissenschafter, Vorlesungsskript (siehe https://people.math.ethz.ch/~blatter/linalg.pdf)
- Hungerbühler, N.: Einführung in partielle Differentialgleichungen: für Ingenieure, Chemiker und Naturwissenschaftler. vdf Hochschulverlag, 2. Auflage (2011)
Voraussetzungen / BesonderesVorlesungen Mathematik I/II

Die Einschreibung in die Übungsgruppen erfolgt online.
Alle unter http://mystudies.ethz.ch/ für die Vorlesung eingeschriebenen Studierenden können sich unter https://echo.ethz.ch/ in eine Übungsgruppe einschreiben.
401-0293-99LMathematik III (Supplement)
Muss zusammen mit "Mathematik III" (401-0293-00L) belegt werden.
W1 KP1AA. Caspar, N. Hungerbühler
KurzbeschreibungModellbildung, Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und der Theorie der gewöhnlichen Differentialgleichungen, Einführung in die Systemanalyse. Die Studierenden erarbeiten zudem eine Unterrichtssequenz.
LernzielDie Studierenden kennen die wesentlichen Elemente der mathematischen Modellierung. Sie sind in der Lage, Modelle zu erstellen und mathematisch zu diskutieren. Sie können selbständig Unterrichtssequenzen zur Modellierung entwickeln.
Inhalt- Modellbildung
- Lineare Modelle:
Vektorräume,
Normalformen,
Lösungsraum eines Linearen DGL-Systems
- Qualitative Aussagen, Nichtlineare Modelle:
Stabilität für eine DGL 1.Ordnung, für allgemeine DGL-Systeme
- Modelle in Raum und Zeit:
Partielle DGL,
Fourier-Reihe, -Transformation,
Laplace-Operator
LiteraturImboden, D. and S. Koch, Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag (2008).
Voraussetzungen / BesonderesGrundvorlesungen zur Analysis
401-9985-00LMentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik A Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für DZ und Lehrdiplom.
O2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, M. Huber, N. Hungerbühler, A. F. Müller, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken.
Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können.
- selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können.
- Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren.
InhaltThematische Schwerpunkte:
Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um.

Lernformen:
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte
Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9986-00LMentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik B Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben.
O2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, M. Huber, N. Hungerbühler, A. F. Müller, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
Lernziel
  •  Seite  1  von  1