Suchergebnis: Katalogdaten im Herbstsemester 2018

Mathematik Master Information
Kernfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3225-00LIntroduction to Lie Groups Information W8 KP4GM. Burger
KurzbeschreibungTopological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.
LernzielThe goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.
LiteraturA. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser)
A. Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)
F. Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)
H. Samelson: "Notes on Lie algebras" (Springer, '90)
S. Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)
A. Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press)
Voraussetzungen / BesonderesTopology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.

Course webpage: https://metaphor.ethz.ch/x/2018/hs/401-3225-00L/
401-3001-61LAlgebraic Topology I Information W8 KP4GP. Biran
KurzbeschreibungThis is an introductory course in algebraic topology. Topics covered include:
singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms, cohomology. Along the way we will introduce the basics of homological algebra and category theory.
Lernziel
Literatur1) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.

2) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

Book can be downloaded for free at:
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

See also:
http://www.math.cornell.edu/~hatcher/#anchor1772800

3) E. Spanier, "Algebraic topology", Springer-Verlag
Voraussetzungen / BesonderesYou should know the basics of point-set topology.

Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level usually covered in the course "topology").

Some knowledge of differential geometry and differential topology is useful but not absolutely necessary.

Some (elementary) group theory and algebra will also be needed.
401-3132-00LCommutative Algebra Information W10 KP4V + 1UP. D. Nelson
KurzbeschreibungThis course provides an introduction to commutative algebra as a foundation for and first steps towards algebraic geometry.
LernzielWe shall cover approximately the material from
--- most of the textbook by Atiyah-MacDonald, or
--- the first half of the textbook by Bosch.
Topics include:
* Basics about rings, ideals and modules
* Localization
* Primary decomposition
* Integral dependence and valuations
* Noetherian rings
* Completions
* Basic dimension theory
LiteraturPrimary Reference:
1. "Introduction to Commutative Algebra" by M. F. Atiyah and I. G. Macdonald (Addison-Wesley Publ., 1969)
Secondary Reference:
2. "Algebraic Geometry and Commutative Algebra" by S. Bosch (Springer 2013)
Tertiary References:
3. "Commutative algebra. With a view towards algebraic geometry" by D. Eisenbud (GTM 150, Springer Verlag, 1995)
4. "Commutative ring theory" by H. Matsumura (Cambridge University Press 1989)
5. "Commutative Algebra" by N. Bourbaki (Hermann, Masson, Springer)
Voraussetzungen / BesonderesPrerequisites: Algebra I (or a similar introduction to the basic concepts of ring theory).
Kernfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel: Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
NummerTitelTypECTSUmfangDozierende
401-3651-00LNumerical Methods for Elliptic and Parabolic Partial Differential Equations (University of Zurich)
Course audience at ETH: 3rd year ETH BSc Mathematics and MSc Mathematics and MSc Applied Mathematics students.
Other ETH-students are advised to attend the course "Numerical Methods for Partial Differential Equations" (401-0674-00L) in the CSE curriculum during the spring semester.

Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: MAT802

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W9 KP4V + 2US. Sauter
KurzbeschreibungThis course gives a comprehensive introduction into the numerical treatment of linear and non-linear elliptic boundary value problems, related eigenvalue problems and linear, parabolic evolution problems. Emphasis is on theory and the foundations of numerical methods. Practical exercises include MATLAB implementations of finite element methods.
LernzielParticipants of the course should become familiar with
* concepts underlying the discretization of elliptic and parabolic boundary value problems
* analytical techniques for investigating the convergence of numerical methods for the approximate solution of boundary value problems
* methods for the efficient solution of discrete boundary value problems
* implementational aspects of the finite element method
InhaltA selection of the following topics will be covered:

* Elliptic boundary value problems
* Galerkin discretization of linear variational problems
* The primal finite element method
* Mixed finite element methods
* Discontinuous Galerkin Methods
* Boundary element methods
* Spectral methods
* Adaptive finite element schemes
* Singularly perturbed problems
* Sparse grids
* Galerkin discretization of elliptic eigenproblems
* Non-linear elliptic boundary value problems
* Discretization of parabolic initial boundary value problems
SkriptCourse slides will be made available to the audience.
LiteraturS. C. Brenner and L. Ridgway Scott: The mathematical theory of Finite Element Methods. New York, Berlin [etc]: Springer-Verl, cop.1994.

A. Ern and J.L. Guermond: Theory and Practice of Finite Element Methods,
Springer Applied Mathematical Sciences Vol. 159, Springer,
1st Ed. 2004, 2nd Ed. 2015.

R. Verfürth: A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013

Additional Literature:
D. Braess: Finite Elements, THIRD Ed., Cambridge Univ. Press, (2007).
(Also available in German.)

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 SMAI Mathématiques et Applications,
Springer, 2012 [DOI: 10.1007/978-3-642-22980-0]

V. Thomee: Galerkin Finite Element Methods for Parabolic Problems,
SECOND Ed., Springer Verlag (2006).
Voraussetzungen / BesonderesPractical exercises based on MATLAB
401-3621-00LFundamentals of Mathematical Statistics Information W10 KP4V + 1US. van de Geer
KurzbeschreibungThe course covers the basics of inferential statistics.
Lernziel
401-4889-00LMathematical Finance Information W11 KP4V + 2UM. Schweizer
KurzbeschreibungAdvanced course on mathematical finance:
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- additional topics
LernzielAdvanced course on mathematical finance, presupposing good knowledge in probability theory and stochastic calculus (for continuous processes)
InhaltThis is an advanced course on mathematical finance for students with a good background in probability. We want to give an overview of main concepts, questions and approaches, and we do this mostly in continuous-time models.

Topics include
- semimartingales and general stochastic integration
- absence of arbitrage and martingale measures
- fundamental theorem of asset pricing
- option pricing and hedging
- hedging duality
- optimal investment problems
- and probably others
SkriptThe course is based on different parts from different books as well as on original research literature.

Lecture notes will not be available.
Literatur(will be updated later)
Voraussetzungen / BesonderesPrerequisites are the standard courses
- Probability Theory (for which lecture notes are available)
- Brownian Motion and Stochastic Calculus (for which lecture notes are available)
Those students who already attended "Introduction to Mathematical Finance" will have an advantage in terms of ideas and concepts.

This course is the second of a sequence of two courses on mathematical finance. The first course "Introduction to Mathematical Finance" (MF I), 401-3888-00, focuses on models in finite discrete time. It is advisable that the course MF I is taken prior to the present course, MF II.

For an overview of courses offered in the area of mathematical finance, see Link.
401-3901-00LMathematical Optimization Information W11 KP4V + 2UR. Weismantel
KurzbeschreibungMathematical treatment of diverse optimization techniques.
LernzielAdvanced optimization theory and algorithms.
Inhalt1) Linear optimization: The geometry of linear programming, the simplex method for solving linear programming problems, Farkas' Lemma and infeasibility certificates, duality theory of linear programming.

2) Nonlinear optimization: Lagrange relaxation techniques, Newton method and gradient schemes for convex optimization.

3) Integer optimization: Ties between linear and integer optimization, total unimodularity, complexity theory, cutting plane theory.

4) Combinatorial optimization: Network flow problems, structural results and algorithms for matroids, matchings, and, more generally, independence systems.
Literatur1) D. Bertsimas & R. Weismantel, "Optimization over Integers". Dynamic Ideas, 2005.

2) A. Schrijver, "Theory of Linear and Integer Programming". John Wiley, 1986.

3) D. Bertsimas & J.N. Tsitsiklis, "Introduction to Linear Optimization". Athena Scientific, 1997.

4) Y. Nesterov, "Introductory Lectures on Convex Optimization: a Basic Course". Kluwer Academic Publishers, 2003.

5) C.H. Papadimitriou, "Combinatorial Optimization". Prentice-Hall Inc., 1982.
Voraussetzungen / BesonderesLinear algebra.
Bachelor-Kernfächer aus Bereichen der reinen Mathematik
Nebst weiteren Einschränkungen gilt:
Die Anrechnung von 401-3531-00L Differentialgeometrie I / Differential Geometry I im Master-Studiengang ist nur dann zulässig, wenn 401-3532-00L Differentialgeometrie II / Differential Geometry II nicht für den Bachelor-Studiengang angerechnet wurde.
Ebenso für:
401-3461-00L Funktionalanalysis I / Functional Analysis I - 401-3462-00L Funktionalanalysis II / Functional Analysis II
401-3001-61L Algebraische Topologie I / Algebraic Topology I - 401-3002-12L Algebraische Topologie II / Algebraic Topology II
401-3132-00L Kommutative Algebra / Commutative Algebra - 401-3146-12L Algebraische Geometrie / Algebraic Geometry
Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat).
NummerTitelTypECTSUmfangDozierende
401-3461-00LFunctional Analysis I Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar.
E-10 KP4V + 1UM. Einsiedler
KurzbeschreibungBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces; Fourier transform and applications.
LernzielAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteraturWe will be using the book
Functional Analysis, Spectral Theory, and Applications
by Manfred Einsiedler and Thomas Ward
and available by SpringerLink.

Other useful, and recommended references include the following:

Lecture Notes on "Funktionalanalysis I" by Michael Struwe

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Elias M. Stein and Rami Shakarchi. Functional analysis (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Peter D. Lax. Functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
Voraussetzungen / BesonderesSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces).
401-3531-00LDifferential Geometry I Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar.
E-10 KP4V + 1UW. Merry
KurzbeschreibungThis will be an introductory course in differential geometry.

Topics covered include:

- Smooth manifolds, submanifolds, vector fields,
- Lie groups, homogeneous spaces,
- Vector bundles, tensor fields, differential forms,
- Integration on manifolds and the de Rham theorem,
- Principal bundles.
Lernziel
SkriptI will produce full lecture notes, available on my website at

www.merry.io/differential-geometry
LiteraturThere are many excellent textbooks on differential geometry. A friendly and readable book that covers everything in Differential Geometry I is:

John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag.

A more advanced (and far less friendly) series of books that covers everything in both Differential Geometry I and II is:

S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volumes I and II (1963, 1969) Wiley.
Bachelor-Kernfächer aus Bereichen der angewandten Mathematik ..
Nebst weiteren Einschränkungen gilt:
Die Anrechnung von 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory im Master-Studiengang ist nur dann zulässig, wenn weder 401-3642-00L Brownian Motion and Stochastic Calculus noch 401-3602-00L Applied Stochastic Processes für den Bachelor-Studiengang angerechnet wurde.
Neu ist 402-0205-00L Quantenmechanik I als angewandtes Kernfach anrechenbar, aber nur unter der Bedingung, dass 402-0224-00L Theoretische Physik (letztmals im FS 2016 angeboten) nicht angerechnet wird oder wurde (weder im Bachelor- noch im Master-Studiengang).
Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat).
NummerTitelTypECTSUmfangDozierende
401-3601-00LProbability Theory Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar.
E-10 KP4V + 1UA.‑S. Sznitman
KurzbeschreibungBasics of probability theory and the theory of stochastic processes in discrete time
LernzielThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
InhaltThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
Skriptavailable, will be sold in the course
LiteraturR. Durrett, Probability: Theory and examples, Duxbury Press 1996
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991
402-0205-00LQuantenmechanik I Information W10 KP3V + 2UM. Gaberdiel
KurzbeschreibungEinführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere die Quantisierung klassischer Systeme, Wellenfunktionen, die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, sowie die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Drehimpuls, Störungstheorie) und generischer Beispiele und Anwendungen (gebundene Zustände, Tunneleffekt, Wasserstoffatom, harmonischer Oszillator). Fähigkeit zur Lösung einfacher Probleme.
InhaltStichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen, diskrete Symmetrien), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Wasserstoffatom, harmonischer Oszillator, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik.
LiteraturJ.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
Wahlfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Wahlfächer aus Bereichen der reinen Mathematik
Auswahl: Algebra, Zahlentheorie, Topologie, diskrete Mathematik, Logik
NummerTitelTypECTSUmfangDozierende
401-3113-68LExponential Sums over Finite Fields Information W8 KP4GE. Kowalski
KurzbeschreibungExponential sums over finite fields arise in many problems of number theory. We will discuss the elementary aspects of the theory (centered on the Riemann Hypothesis for curves, following Stepanov's method) and survey the formalism arising from Deligne's general form of the Riemann Hypothesis over finite fields. We will then discuss various applications, especially in analytic number theory.
LernzielThe goal is to understand both the basic results on exponential sums in one variable, and the general formalism of Deligne and Katz that underlies estimates for much more general types of exponential sums, including the "trace functions" over finite fields.
InhaltExamples of elementary exponential sums
The Riemann Hypothesis for curves and its applications
Definition of trace functions over finite fields
The formalism of the Riemann Hypothesis of Deligne
Selected applications
SkriptLectures notes from various sources will be provided
LiteraturKowalski, "Exponential sums over finite fields, I: elementary methods:
Iwaniec-Kowalski, "Analytic number theory", chapter 11
Fouvry, Kowalski and Michel, "Trace functions over finite fields and their applications"
401-3100-68LIntroduction to Analytic Number Theory Information W8 KP4GI. N. Petrow
KurzbeschreibungThis course is an introduction to classical multiplicative analytic number theory. The main object of study is the distribution of the prime numbers in the integers. We will study arithmetic functions and learn the basic tools for manipulating and calculating their averages. We will make use of generating series and tools from complex analysis.
LernzielThe main goal for the course is to prove the prime number theorem in arithmetic progressions: If gcd(a,q)=1, then the number of primes p = a mod q with p<x is approximately (1/phi(q))*(x/log x), as x tends to infinity, where phi(q) is the Euler totient function.
InhaltDeveloping the necessary techniques and theory to prove the prime number theorem in arithmetic progressions will lead us to the study of prime numbers by Chebyshev's method, to study techniques for summing arithmetic functions by Dirichlet series, multiplicative functions, L-series, characters of a finite abelian group, theory of integral functions, and a detailed study of the Riemann zeta function and Dirichlet's L-functions.
SkriptLecture notes will be provided for the course.
LiteraturMultiplicative Number Theory by Harold Davenport
Multiplicative Number Theory I. Classical Theory by Hugh L. Montgomery and Robert C. Vaughan
Analytic Number Theory by Henryk Iwaniec and Emmanuel Kowalski
Voraussetzungen / BesonderesComplex analysis
Group theory
Linear algebra
Familiarity with the Fourier transform and Fourier series preferable but not required.
401-3059-00LKombinatorik II
Findet dieses Semester nicht statt.
W4 KP2GN. Hungerbühler
KurzbeschreibungDer Kurs Kombinatorik I und II ist eine Einführung in die abzählende Kombinatorik.
LernzielDie Studierenden sind in der Lage, kombinatorische Probleme einzuordnen und die adaequaten Techniken zu deren Loesung anzuwenden.
InhaltInhalt der Vorlesungen Kombinatorik I und II: Kongruenztransformationen der Ebene, Symmetriegruppen von geometrischen Figuren, Eulersche Funktion, Cayley-Graphen, formale Potenzreihen, Permutationsgruppen, Zyklen, Lemma von Burnside, Zyklenzeiger, Saetze von Polya, Anwendung auf die Graphentheorie und isomere Molekuele.
Auswahl: Geometrie
NummerTitelTypECTSUmfangDozierende
401-3057-00LEndliche Geometrien IIW4 KP2GN. Hungerbühler
KurzbeschreibungEndliche Geometrien I, II: Endliche Geometrien verbinden Aspekte der Geometrie mit solchen der diskreten Mathematik und der Algebra endlicher Körper. Inbesondere werden Modelle der Inzidenzaxiome konstruiert und Schliessungssätze der Geometrie untersucht. Anwendungen liegen im Bereich der Statistik, der Theorie der Blockpläne und der Konstruktion orthogonaler lateinischer Quadrate.
LernzielEndliche Geometrien I, II: Die Studierenden sind in der Lage, Modelle endlicher Geometrien zu konstruieren und zu analysieren. Sie kennen die Schliessungssätze der Inzidenzgeometrie und können mit Hilfe der Theorie statistische Tests entwerfen sowie orthogonale lateinische Quadrate konstruieren. Sie sind vertraut mit Elementen der Theorie der Blockpläne.
InhaltEndliche Geometrien I, II: Endliche Körper, Polynomringe, endliche affine Ebenen, Axiome der Inzidenzgeometrie, Eulersches Offiziersproblem, statistische Versuchsplanung, orthogonale lateinische Quadrate, Transformationen endlicher Ebenen, Schliessungsfiguren von Desargues und Pappus-Pascal, Hierarchie der Schliessungsfiguren, endliche Koordinatenebenen, Schiefkörper, endliche projektive Ebenen, Dualitätsprinzip, endliche Möbiusebenen, selbstkorrigierende Codes, Blockpläne
Literatur- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.
401-3111-68LElliptische Kurven und KryptographieW8 KP3V + 1UL. Halbeisen
KurzbeschreibungIm ersten Teil der Vorlesung wird die algebraische Struktur von elliptischen
Kurven behandelt. Insbesondere wird der Satz von Mordell bewiesen. Im zweiten Teil der Vorlesung werden dann Anwendungen elliptischer Kurven in der Kryptographie gezeigt, wie z.B. der Diffie-Hellman-Schluesselaustausch.
LernzielRationale Punkte auf elliptischen Kurven, insbesondere Arithmetik auf elliptischen Kurven, Satz von Mordell, Kongruente Zahlen

Anwendungen der elliptischen Kurven in der Kryptographie, wie zum Beispiel Diffie-Hellman-Schluesselaustausch, Pollard-Rho-Methode
InhaltIm ersten Teil der Vorlesung wird die algebraische Struktur von elliptischen
Kurven behandelt und die Menge der rationalen Punkte auf elliptischen Kurven untersucht. Insbesondere wird mit Hilfe von Saetzen aus der Algebra wie auch aus der projektiven Geometrie gezeigt, dass die Menge der rationalen Punkte auf einer elliptischen Kurven unter einer bestimmten Operation eine endlich erzeugte abelsche Gruppe bildet. Zudem werden elliptische Kurven untersucht, welche mit rationalen, rechtwinkligen Dreiecken mit ganzzahligem Flaecheninhalt zusammenhaengen.

Im zweiten Teil der Vorlesung werden dann Anwendungen elliptischer Kurven in der Kryptographie gezeigt. Solche Anwendungen sind zum Beispiel ein auf
elliptischen Kurven basierendes Kryptosystem oder ein Algorithmus zur Faktorisierung grosser Zahlen.
LiteraturJoseph Silverman, John Tate: "Rational Points on Elliptic Curves", Undergraduate Texts in Mathematics, Springer-Verlag (1992)

Ian Blake, Gadiel Seroussi, Nigel Smart: "Elliptic Curves in Cryptography",
Lecture Notes Series 265, Cambridge University Press (2004)
Voraussetzungen / BesonderesVoraussgesetzt werden Algebra I und Grundbegriffe der projektiven Geometrie.
Auswahl: Analysis
NummerTitelTypECTSUmfangDozierende
401-4115-00LIntroduction to Geometric Measure TheoryW6 KP3VU. Lang
KurzbeschreibungIntroduction to Geometric Measure Theory from a metric viewpoint. Contents: Lipschitz maps, differentiability, area and coarea formula, rectifiable sets, introduction to the (de Rham-Federer-Fleming) theory of currents, currents in metric spaces after Ambrosio-Kirchheim, normal currents, relation to BV functions, slicing, compactness theorem for integral currents and applications.
Lernziel
InhaltExtendability and differentiability of Lipschitz maps, metric differentiability, rectifiable sets, approximate tangent spaces, area and coarea formula, brief survey of the (de Rham-Federer-Fleming) theory of currents, currents in metric spaces after Ambrosio-Kirchheim, currents with finite mass and normal currents, relation to BV functions, rectifiable and integral currents, slicing, compactness theorem for integral currents and applications.
Literatur- Pertti Mattila, Geometry of Sets and Measures in Euclidean Spaces, 1995
- Herbert Federer, Geometric Measure Theory, 1969
- Leon Simon, Introduction to Geometric Measure Theory, 2014, web.stanford.edu/class/math285/ts-gmt.pdf
- Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta math. 185 (2000), 1-80
- Urs Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683-742
401-4463-62LFourier Analysis in Function Space TheoryW4 KP2VT. Rivière
KurzbeschreibungIn the most important part of the course, we will present the notion of Singular Integrals and Calderón-Zygmund theory as well as its application to the analysis of linear elliptic operators.
Lernziel
InhaltDuring the first lectures we will review the theory of tempered distributions and their Fourier transforms. We will go in particular through the notion of Fréchet spaces, Banach-Steinhaus for Fréchet spaces etc. We will then apply this theory to the Fourier characterization of Hilbert-Sobolev spaces.
In the second part of the course we will study fundamental pro­perties of the Hardy-Littlewood Maximal Function in relation with L^p spaces. We will then make a digression through the notion of Marcinkiewicz weak L^p spaces and Lorentz spaces. At this occa­sion we shall give in particular a proof of Aoki-Rolewicz theorem on the metrisability of quasi-normed spaces. We will introduce the preduals to the weak L^p spaces, the Lorentz L^{p',1} spaces as well as the general L^{p,q} spaces and show some applications of these dualities such as the improved Sobolev embeddings.
In the third part of the course, the most important one, we will present the notion of Singular Integrals and Calderón-Zygmund theory as well as its application to the analysis of linear elliptic operators.
This theory will naturally bring us, via the so called Littlewood-Paley decomposition, to the Fourier characterization of classical Hilbert and non Hilbert Function spaces which is one of the main goals of this course.
If time permits we shall present the notion of Paraproduct, Para­compositions and the use of Littlewood-Paley decomposition for estimating products and general non-linearities. We also hope to cover fundamental notions from integrability by compensation theory such as Coifman-Rochberg-Weiss commutator estimates and some of its applications to the analysis of PDE.
Literatur1) Elias M. Stein, "Singular Integrals and Differentiability Proper­ties of Functions" (PMS-30) Princeton University Press.
2) Javier Duoandikoetxea, "Fourier Analysis" AMS.
3) Loukas Grafakos, "Classical Fourier Analysis" GTM 249 Springer.
4) Loukas Grafakos, "Modern Fourier Analysis" GTM 250 Springer.
Voraussetzungen / BesonderesNotions from ETH courses in Measure Theory, Functional Analysis I and II (Fun­damental results in Banach and Hilbert Space theory, Fourier transform of L^2 Functions)
Auswahl: Weitere Gebiete
NummerTitelTypECTSUmfangDozierende
401-3502-68LReading Course Belegung eingeschränkt - Details anzeigen
DIE BELEGUNG ERFOLGT DURCH DAS STUDIENSEKRETARIAT.

Bitte schicken Sie ein E-Mail an das Studiensekretariat D-MATH <studiensekretariat@math.ethz.ch> mit folgenden Angaben:
1) welchen Reading Course (60, 90, 120 Arbeitsstunden entsprechend 2, 3, 4 ECTS-Kreditpunkten) Sie belegen möchten;
2) in welchem Semester;
3) für welchen Studiengang;
4) Ihr Name und Vorname;
5) Ihre Studierenden-Nummer;
6) der Name und Vorname des Betreuers/der Betreuerin des Reading Courses.
W2 KP4AProfessor/innen
KurzbeschreibungIn diesem Reading Course wird auf Eigeninitiative und auf individuelle Vereinbarung mit einem Dozenten/einer Dozentin hin ein Stoff durch eigenständiges Literaturstudium erarbeitet.
Lernziel
401-3503-68LReading Course Belegung eingeschränkt - Details anzeigen
DIE BELEGUNG ERFOLGT DURCH DAS STUDIENSEKRETARIAT.

Bitte schicken Sie ein E-Mail an das Studiensekretariat D-MATH <studiensekretariat@math.ethz.ch> mit folgenden Angaben:
1) welchen Reading Course (60, 90, 120 Arbeitsstunden entsprechend 2, 3, 4 ECTS-Kreditpunkten) Sie belegen möchten;
2) in welchem Semester;
3) für welchen Studiengang;
4) Ihr Name und Vorname;
5) Ihre Studierenden-Nummer;
6) der Name und Vorname des Betreuers/der Betreuerin des Reading Courses.
W3 KP6AProfessor/innen
KurzbeschreibungIn diesem Reading Course wird auf Eigeninitiative und auf individuelle Vereinbarung mit einem Dozenten/einer Dozentin hin ein Stoff durch eigenständiges Literaturstudium erarbeitet.
Lernziel
  •  Seite  1  von  7 Nächste Seite Letzte Seite     Alle