Search result: Catalogue data in Spring Semester 2018

Computer Science Master Information
Focus Courses
Focus Courses in Distributed Systems
Focus Elective Courses Distributed Systems
NumberTitleTypeECTSHoursLecturers
252-0312-00LUbiquitous Computing Information W3 credits2VF. Mattern, S. Mayer
AbstractUbiquitous computing integrates tiny wirelessly connected computers and sensors into the environment and everyday objects. Main topics: The vision of ubiquitous computing, trends in technology, smart cards, RFID, Personal Area Networks (Bluetooth), sensor networks, location awareness, privacy and security, application areas, economic and social impact.
ObjectiveThe vision of ubiquitous computing, trends in technology, smart cards, RFID, Personal Area Networks (Bluetooth), sensor networks, location awareness, privacy and security, application areas, economic and social impact.
Lecture notesCopies of slides will be made available
LiteratureWill be provided in the lecture. To put you in the mood:
Mark Weiser: The Computer for the 21st Century. Scientific American, September 1991, pp. 94-104
252-0807-00LInformation Systems Laboratory Information Restricted registration - show details
Number of participants limited to 12.

In the Master Programme max. 10 credits can be accounted by Labs on top of the Interfocus Courses. Additional Labs will be listed on the Addendum.
W10 credits9PM. Norrie
AbstractThe purpose of this laboratory course is to practically explore modern techniques to build large-scale distributed information systems. Participants will work in groups of three or more students, and develop projects in several phases.
ObjectiveThe students will gain experience of working with technologies used in the design and development of information systems.
ContentFirst week: Kick-off meeting and project assignment
Second week: Meeting with the project supervisor to discuss the goals and scope of the project.
During the semester: Individual group work. Each team member should contribute to the project roughly about 10h/week, excluding any necessary reading or self-studying (e.g. the time spent to learn a new technology). In addition, it is expected that each team can meet with their supervisor on a regular basis.
End of semester: Final presentation.
252-0817-00LDistributed Systems Laboratory Information
In the Master Programme max. 10 credits can be accounted by Labs
on top of the Interfocus Courses. Additional Labs will be listed on the Addendum.
W10 credits9PG. Alonso, T. Hoefler, F. Mattern, T. Roscoe, A. Singla, R. Wattenhofer, C. Zhang
AbstractThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on mobile phones.
ObjectiveStudents acquire practical knowledge about technologies from the area of distributed systems.
ContentThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on mobile phones. The objecte of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.
For information of the course or projects available, please contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso.
263-3501-00LAdvanced Computer Networks Information W5 credits2V + 2UA. Singla, P. M. Stüdi
AbstractThis course covers a set of advanced topics in computer networks. The focus is on principles, architectures, and protocols used in modern networked systems, such as the Internet and data center networks.
ObjectiveThe goals of the course are to build on basic undergraduate-level networking, and provide an understanding of the tradeoffs and existing technology in the design of large, complex networked systems, together with concrete experience of the challenges through a series of lab exercises.
ContentThe focus of the course is on principles, architectures, and protocols used in modern networked systems. Topics include data center network topologies, software defined networking, network function virtualization, flow control and congestion control in data centers, end-point optimizations, and server virtualization.
263-3710-00LMachine Perception Information Restricted registration - show details
Students, who have already taken 263-3700-00 User Interface Engineering are not allowed to register for this course!
W5 credits2V + 1U + 1AO. Hilliges
AbstractRecent developments in neural network (aka “deep learning”) have drastically advanced the performance of machine perception systems in a variety of areas including drones, self-driving cars and intelligent UIs. This course is a deep dive into details of the deep learning algorithms and architectures for a variety of perceptual tasks.
ObjectiveStudents will learn about fundamental aspects of modern deep learning approaches for perception. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in learning-based computer vision, robotics and HCI. The final project assignment will involve training a complex neural network architecture and applying it on a real-world dataset of human motion.

The core competency acquired through this course is a solid foundation in deep-learning algorithms to process and interpret human input into computing systems. In particular, students should be able to develop systems that deal with the problem of recognizing people in images, detecting and describing body parts, inferring their spatial configuration, performing action/gesture recognition from still images or image sequences, also considering multi-modal data, among others.
ContentWe will focus on teaching how to set up the problem of machine perception, the learning algorithms (e.g. backpropagation), practical engineering aspects as well as advanced deep learning algorithms including generative models.

The course covers the following main areas:
I) Machine-learning algorithms for input recognition, computer vision and image classification (human pose, object detection, gestures, etc.)
II) Deep-learning models for the analysis of time-series data (temporal sequences of motion)
III) Learning of generative models for synthesis and prediction of human activity.

Specific topics include: 
• Deep learning basics:
○ Neural Networks and training (i.e., backpropagation)
○ Feedforward Networks
○ Recurrent Neural Networks
• Deep Learning techniques user input recognition:
○ Convolutional Neural Networks for classification
○ Fully Convolutional architectures for dense per-pixel tasks (i.e., segmentation)
○ LSTMs & related for time series analysis
○ Generative Models (GANs, Variational Autoencoders)
• Case studies from research in computer vision, HCI, robotics and signal processing
LiteratureDeep Learning
Book by Ian Goodfellow and Yoshua Bengio
Prerequisites / NoticeThis is an advanced grad-level course that requires a background in machine learning. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. The course will focus on state-of-the-art research in deep-learning and is not meant as extensive tutorial of how to train deep networks with Tensorflow..

Please take note of the following conditions:
1) The number of participants is limited to 100 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge
3) All practical exercises will require basic knowledge of Python and will use libraries such as TensorFlow, scikit-learn and scikit-image. We will provide introductions to TensorFlow and other libraries that are needed but will not provide introductions to basic programming or Python.

The following courses are strongly recommended as prerequisite:
* "Machine Learning"
* "Visual Computing" or "Computer Vision"

The course will be assessed by a final written examination in English. No course materials or electronic devices can be used during the examination. Note that the examination will be based on the contents of the lectures, the associated reading materials and the exercises.
  •  Page  1  of  1