Search result: Catalogue data in Spring Semester 2018

Physics Bachelor Information
Core Courses
Core Courses in Experimental Physics
NumberTitleTypeECTSHoursLecturers
402-0266-00LIntroduction to Nuclear and Particle PhysicsW10 credits3V + 2UC. Grab
AbstractIntroduction to the concepts of nuclear and particle physics.
Learning objectiveIntroduction to the concepts of nuclear and particle physics.
Discussion of new theoretical concepts and important experiments, which
brought about major breakthroughs in our understanding of the underlying physics.
Applications of nuclear and particle physics.
Links between particle physics and cosmology.
Content- Building blocks of matter (quarks and leptons) and their interactions (QED, QCD, weak interaction)
- The Standard Model of particle physics und open fundamental questions
- Bound systems (nuclear forces, structure of nuclei, stability)
- Applications of nuclear and particle physics (nuclear fusion and fission)
- Nuclear physics, particle physics and cosmology
Lecture notesMore information and additional material concerning lecture and excersises are collected at Moodle, link to be published.
Literature- Povh et al.: Teilchen und Kerne, Springer Verlag 2009
- Henley, Garcia: Subatomic Physics, World Scientific 2007
- Griffith: Introduction to Elementary Particles, Wiley VCH 2008
- Demtroeder: Experimentalphysik IV: Kern- Teilchen- und Astrophysik, Springer Verlag, 2009

See the web site for more suggestions
402-0275-00LQuantum ElectronicsW10 credits3V + 2UJ. Faist
AbstractClassical and semi-classical introduction to Quantum Electronics. Mandatory for further elective courses in Quantum Electronics. The field of Quantum Electronics describes propagation of light and its interaction with matter. The emphasis is set on linear pulse and beam propagation in dispersive media, optical anisotropic materials, and waveguides and lasers.
Learning objectiveTeach the fundamental building blocks of Quantum Electronics. After taking this course students will be able to describe light propagation in dispersive and nonlinear media, as well as the operation of polarization optics and lasers.
ContentPropagation of light in dispersive media
Light propagation through interfaces
Interference and coherence
Interferometry
Fourier Optics
Beam propagation
Optical resonators
Laser fundamentals
Polarization optics
Waveguides
Nonlinear optics
Lecture notesScripts will be distributed in class (online) via moodle
LiteratureReference:
Saleh, B.E.A., Teich, M.C.; Fundamentals of Photonics, John Wiley & Sons, Inc., newest edition
Prerequisites / NoticeMandatory lecture for physics students

Prerequisites (minimal): vector analysis, differential equations, Fourier transformation
  •  Page  1  of  1