Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Neural Systems and Computation Master Information
Kernfächer
Wählbare Kernfächer
Theoretische und Computergestützte Neurowissenschaften
NummerTitelTypECTSUmfangDozierende
227-0395-00LNeural SystemsW6 KP2V + 1U + 1AR. Hahnloser, M. F. Yanik, B. Grewe
KurzbeschreibungThis course introduces principles of information processing in neural systems. It covers basic neuroscience on a level suitable for engineering students. The course introduces neuroscientific techniques used in studies of both animal behaviors and their underlying neural mechanisms. Students learn about neural signaling principles gained from experimental data.
LernzielThis course introduces
- Methods for monitoring of animal behaviors in complex environments
- Information-theoretic principles of behavior
- Methods for performing neurophysiological recordings in intact nervous systems
- Methods for manipulating the state and activity in selective neuron types
- Methods for reconstructing the synaptic networks among neurons
- Information decoding from neural populations, and
- Neurobiological principles for machine learning.
InhaltFrom active membranes to propagation of action potentials. From synaptic physiology to synaptic learning rules. From receptive fields to neural population decoding. From fluorescence imaging to connectomics. Methods for reading and manipulation neural ensembles. From classical conditioning to reinforcement learning. From the visual system to deep convolutional networks. Brain architectures for learning and memory. From birdsong to computational linguistics.
Voraussetzungen / BesonderesBefore taking this course, students are encouraged to complete "Bioelectronics and Biosensors" (227-0393-10L)
227-0973-00LTranslational Neuromodeling Information W6 KP4GK. Stephan
KurzbeschreibungThis course provides a systematic introduction to Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). It focuses on a generative modeling strategy and discusses (hierarchical) Bayesian models of neuroimaging data and behaviour in detail.
LernzielTo obtain an understanding of the goals, concepts and methods of Translational Neuromodeling and Computational Psychiatry/Psychosomatics, particularly with regard to Bayesian models of neuroimaging (fMRI, EEG) and behavioural data.
InhaltThis course provides a systematic introduction to Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). The first part of the course will introduce disease concepts from Psychiatry and Psychosomatics, their history, and clinical priority problems. The second part of the course concerns computational modeling of neuronal and cognitive processes for clinical applications. A particular focus is on Bayesian methods and generative models, e.g. dynamic causal models (DCMs) for inferring neuronal mechanisms from neuroimaging data, and hierarchical Bayesian models for inference on cognitive mechanisms from behavioural data. The course discusses the mathematical and statistical principles behind these models, illustrates their application to various psychiatric diseases, and outlines a general research strategy based on generative models.
In the practical exercises, students are asked to program their own generative model (in MATLAB) and use it for simulations and inference from real fMRI or behavioural data.
LiteraturSee TNU website:
Link
Voraussetzungen / BesonderesBasic statistical knowledge, MATLAB programming skills
252-1424-00LModels of ComputationW6 KP2V + 2U + 1AM. Cook
KurzbeschreibungThis course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more.
LernzielThe goal of this course is to become acquainted with a wide variety of models of computation, to understand how models help us to understand the modeled systems, and to be able to develop and analyze models appropriate for new systems.
InhaltThis course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more.
  •  Seite  1  von  1