Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Maschineningenieurwissenschaften Master Information
Kernfächer
Energy, Flows and Processes
Die unter der Kategorie “Kernfächer” gelisteten Fächer sind empfohlen. Andere Kurse sind nicht ausgeschlossen, benötigen jedoch die Zustimmung des Tutors/der Tutorin.
NummerTitelTypECTSUmfangDozierende
151-0106-00LOrbital DynamicsW4 KP3GA. A. Kubik
KurzbeschreibungPrinciples of the motion of natural and artificial satellites, rocket dynamics, orbital maneuvers and interplanetary missions.
LernzielKnowledge of the basic theory of satellite dynamics. Ability to apply the acquired theory to simple examples.
InhaltThe two-body problem, rocket dynamics, orbital maneuvers, interplanetary missions, the restricted three-body problem, perturbation equations, satellite attitude dynamics.
151-0110-00LCompressible FlowsW4 KP2V + 1UJ.‑P. Kunsch
KurzbeschreibungThemen: Instationäre eindimensionale Unterschall- und Überschallströmungen, Akustik, Schallausbreitung, Überschallströmung mit Stössen und Prandtl-Meyer Expansionen, Umströmung von schlanken Körpern, Stossrohre, Reaktionsfronten (Deflagration und Detonation).
Mathematische Werkzeuge: Charakteristikenverfahren, ausgewählte numerische Methoden.
LernzielIllustration der Physik der kompressiblen Strömungen und Üben der mathematischen Methoden anhand einfacher Beispiele.
InhaltDie Kompressibilität im Zusammenspiel mit der Trägheit führen zu Wellen in einem Fluid. So spielt die Kompressibilität bei instationären Vorgängen (Schwingungen in Gasleitungen, Auspuffrohren usw.) eine wichtige Rolle. Auch bei stationären Unterschallströmungen mit hoher Machzahl oder bei Überschallströmungen muss die Kompressibilität berücksichtigt werden (Flugtechnik, Turbomaschinen usw.).
In dem ersten Teil der Vorlesung wird die Wellenausbreitung bei eindimensionalen Unterschall- und Überschallströmungen behandelt. Es werden sowohl Wellen kleiner Amplitude in akustischer Näherung, als auch Wellen grosser Amplitude mit Stossbildung behandelt.

Der zweite Teil befasst sich mit ebenen stationären Überschallströmungen. Schlanke Körper in einer Parallelströmung werden als schwache Störungen der Strömung angesehen und können mit den Methoden der Akustik behandelt werden. Zu der Beschreibung der zweidimensionalen Überschallumströmung beliebiger Körper gehören schräge Verdichtungsstösse, Prandtl -Meyer Expansionen usw.. Unterschiedliche Randbedingungen (Wände usw.) und Wechselwirkungen, Reflexionen werden berücksichtigt.
Skriptnicht verfügbar
LiteraturEine Literaturliste mit Buchempfehlungen wird am Anfang der Vorlesung ausgegeben.
Voraussetzungen / BesonderesVoraussetzungen: Fluiddynamik I und II
151-0116-10LHigh Performance Computing for Science and Engineering (HPCSE) for Engineers II Information W4 KP4GP. Koumoutsakos, P. Chatzidoukas
KurzbeschreibungThis course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Uncertainty Quantification and Propagation including the implementation of relevant algorithms on HPC architectures.
LernzielThe course will teach
- programming models and tools for multi and many-core architectures
- fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences
InhaltHigh Performance Computing:
- Advanced topics in shared-memory programming
- Advanced topics in MPI
- GPU architectures and CUDA programming

Uncertainty Quantification:
- Uncertainty quantification under parametric and non-parametric modeling uncertainty
- Bayesian inference with model class assessment
- Markov Chain Monte Carlo simulation
SkriptLink
Class notes, handouts
Literatur- Class notes
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein
- CUDA by example, J. Sanders and E. Kandrot
- Data Analysis: A Bayesian Tutorial, Devinderjit Sivia
151-0156-00LSafety of Nuclear Power Plants Information W4 KP2V + 1UH.‑M. Prasser, V. Dang, L. Podofillini
KurzbeschreibungKnowledge about safety concepts and requirements of nuclear power plants and their implementation in deterministic safety concepts and safety systems. Knowledge about behavior under accident conditions and about the methods of probabilistic risk analysis and how to handle results. Introduction into key elements of the enhanced safety of nuclear systems for the future.
LernzielDeep understanding of safety requirements, concepts and system of nuclear power plants, knowledge of deterministic and probabilistic methods for safety analysis, aspects of nuclear safety research, licensing of nuclear power plant operation. Overview on key elements of the enhanced safety of nuclear systems for the future.
Inhalt(1) Introduction into the specific safety issues of nuclear power plants, main facts of health effects of ionizing radiation, defense in depth approach. (2) Reactor protection and reactivity control, reactivity induced accidents (RIA). (3) Loss-of-coolant accidents (LOCA), emergency core cooling systems. (4) Short introduction into severe accidents (Beyond Design Base Accidents, BDBA). (5) Probabilistic risk analysis (PRA level 1,2,3). (6) Passive safety systems. (7) Safety of innovative reactor concepts.
SkriptScript:
Hand-outs of lecture slides will be distributed
Audio recording of lectures will be provided
Script "Short introduction into basics of nuclear power"
LiteraturS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Chapman & Hall, NY, 1994
Voraussetzungen / BesonderesPrerequisites:
Recommended in advance (not binding): 151-0163-00L Nuclear Energy Conversion
151-0160-00LNuclear Energy SystemsW4 KP2V + 1UH.‑M. Prasser, I. Günther-Leopold, W. Hummel, P. K. Zuidema
KurzbeschreibungKernenergie und Nachhaltigkeit, Urangewinnung, Urananreicherung, Kernbrennstoffherstellung, Wiederaufarbeitung ausgedienter Brennelemente, Entsorgung von radioaktivem Abfall, Lebenszyklusanalyse, Energie- und Stoffbilanzen von Kernkraftwerken.
LernzielDie Studenten erhalten einen Überblick über die physikalisch-chemischen Grundlagen, die technologischen Prozesse und die Entwicklungstrends in Bereich der gesamten nuklearen Energieumwandlungskette. Sie werden in die Lage versetzt, die Potentiale und Risiken der Einbettung der Kernenergie in ein komplexes Energiesystem einzuschätzen.
Inhalt(1) Überblick über den kosmischen und geologischen Ursprung von Uranvorkommen, Methoden des Uranbergbaus, der Urangewinnung aus dem Erz, (2) Urananreicherung (Diffusionszellen, Ultrazentrifugen, alternative Methoden), chemische Konvertierung Uranoxid - Fluorid - Oxid, Brennelementfertigung, Abbrand im Reaktor. (3) Wiederaufarbeitung abgebrannter Brennelemente (hydro- und pyrochemisch) einschliesslich der modernen Verfahren der Tiefentrennung hochaktiver Abfälle, Methoden der Minimierung von Menge und Radiotoxizität des nuklearen Abfalls, (4) Entsorgung von Nuklearabfall, Abfallkategorien und -herkunft, geologische und künstliche Barrieren in Tiefenlagern und deren Eigenschaften, Projekt für ein geologisches Tiefenlager für radioaktive Abfälle in der Schweiz, (5) Methoden zur Ermittlung der Nachhaltigkeit von Energiesystemen, Masse der Nachhaltigkeit, Vergleich der Kernenergie mit anderen Energieumwandlungstechnologien, Umwelteinfluss des Kernenergiesystems als Ganzes, spezieller Aspekt CO2-Emissionen, CO2-Reduktionskosten. Die Materialbilanzen unterschiedlicher Varianten des Brennstoffzyklus werden betrachtet.
SkriptVorlesungsfolien werden verteilt und in digitaler Form bereit gestellt.
151-0166-00LSpecial Topics in Reactor PhysicsW4 KP3GS. Pelloni, K. Mikityuk, A. Pautz
KurzbeschreibungReactor physics calculations for assessing the performance and safety of nuclear power plants are, in practice, carried out using large computer codes simulating different key phenomena. This course provides a basis for understanding state-of-the-art calculational methodologies in the above context.
LernzielStudents are introduced to advanced methods of reactor physics analysis for nuclear power plants.
InhaltCross-sections preparation. Slowing down theory. Differential form of the neutron transport equation and method of discrete ordinates (Sn). Integral form of the neutron transport equation and method of characteristics. Method of Monte-Carlo. Modeling of fuel depletion. Lattice calculations and cross-section parametrization. Modeling of full core neutronics using nodal methods. Modeling of feedbacks from fuel behavior and thermal hydraulics. Point and spatial reactor kinetics. Uncertainty and sensitivity analysis.
SkriptHand-outs will be provided on the website.
LiteraturChapters from various text books on Reactor Theory, etc.
151-0204-00LAerospace PropulsionW4 KP2V + 1UR. S. Abhari, N. Chokani
KurzbeschreibungIn this course, an introduction of working principals of aero-engines and the related background in aero- and thermodynamics is presented. System as well as component engineering aspects of engine design are examined.
LernzielIntroduction of working principals of aero-engines and the related background in aero- and thermodynamics. Engineering aspects of engine design.
InhaltThis course focuses on the fundamental concepts as well as the applied technologies for aerospace application, with a primary focus related to aviation. The systematic evolution of the aircraft propulsion engines, from turbojet to the modern high bypass ratio turbofan, including the operational limitations, are examined. Following the system analysis, the aerodynamic design of each component, including the inlet, fan, compressor, combustors, turbines and exhaust nozzles are presented. The mechanical and material limitations of the modern designed are also discussed. The environmental aspects of propulsion (noise and emissions) are also presented. In the last part of the course, a basic introduction to the fundamentals of space propulsion is also presented.
SkriptVorlesungsunterlagen werden verteilt
151-0211-00LConvective Heat Transport
Findet dieses Semester nicht statt.
W5 KP4GH. G. Park
KurzbeschreibungThis course will teach the field of heat transfer by convection. This heat transport process is intimately tied to fluid dynamics and mathematics, meaning that solid background in these disciplines are necessary. Convection has direct implications in various industries, e.g. microfabrication, microfluidics, microelectronics cooling, thermal shields protection for space shuttles.
LernzielAdvanced introduction to the field of heat transfer by convection.
InhaltThe course covers the following topics:
1. Introduction: Fundamentals and Conservation Equations 2. Laminar Fully Developed Velocity and Temperature Fields 3. Laminar Thermally Developing Flows 4. Laminar Hydrodynamic Boundary Layers 5. Laminar Thermal Boundary Layers 6. Laminar Thermal Boundary Layers with Viscous Dissipation 7. Turbulent Flows 8. Natural Convection.
SkriptLecture notes will be delivered in class via note-taking. Textbook serves as a great source of the lecture notes.
LiteraturText:
(Main) Kays and Crawford, Convective Heat and Mass Transfer, McGraw-Hill, Inc.
(Secondary) A. Bejan, Convection Heat Transfer
References:
Incropera and De Witt, Fundamentals of Heat and Mass Transfer, or Introduction to Heat Transfer Kundu and Cohen, Fluid Mechanics, Academic Press V. Arpaci, Convection Heat Transfer
151-0212-00LAdvanced CFD MethodsW4 KP2V + 1UP. Jenny
KurzbeschreibungFundamental and advanced numerical methods used in commercial and open-source CFD codes will be explained. The main focus is on numerical methods for conservation laws with discontinuities, which is relevant for trans- and hypersonic gas dynamics problems, but also CFD of incompressible flows, Direct Simulation Monte Carlo and the Lattice Boltzmann method are explained.
LernzielKnowing what's behind a state-of-the-art CFD code is not only important for developers, but also for users in order to choose the right methods and to achieve meaningful and accurate numerical results. Acquiring this knowledge is the main goal of this course.

Established numerical methods to solve the incompressible and compressible Navier-Stokes equations are explained, whereas the focus lies on finite volume methods for compressible flow simulations. In that context, first the main theory and then numerical schemes related to hyperbolic conservation laws are explained, whereas not only examples from fluid mechanics, but also simpler, yet illustrative ones are considered (e.g. Burgers and traffic flow equations). In addition, two less commonly used yet powerful approaches, i.e., the Direct Simulation Monte Carlo (DSMC) and Lattice Boltzmann methods, are introduced.

For most exercises a C++ code will have to be modified and applied.
Inhalt- Finite-difference vs. finite-element vs. finite-volume methods
- Basic approach to simulate incompressible flows
- Brief introduction to turbulence modeling
- Theory and numerical methods for compressible flow simulations
- Direct Simulation Monte Carlo (DSMC)
- Lattice Boltzmann method
SkriptPart of the course is based on the referenced books. In addition, the participants receive a manuscript and the slides.
Literatur"Computational Fluid Dynamics" by H. K. Versteeg and W. Malalasekera.
"Finite Volume Methods for Hyperbolic Problems" by R. J. Leveque.
Voraussetzungen / BesonderesBasic knowledge in
- fluid dynamics
- numerical mathematics
- programming (programming language is not important, but C++ is of advantage)
151-0214-00LTurbomachinery Mechanics and Dynamics
Prerequisites of this course are listed under "catalogue data".
W4 KP3GA. Zemp
KurzbeschreibungDesigning gas turbines means to translate the aerodynamic and thermodynamic intentions into a system, which is both mechanically sound and manufacturable at reasonable cost. This lecture is aimed at giving a comprehensive overview of the mechanical and design requirements, which must be fulfilled by a safe and reliable machine. Material and life prediction methods will be addressed as well.
LernzielTo understand the mechanical behaviour of the mechanical systems of gas turbines.
To know the risks of mechanical and thermomechanical malfunctions and the corresponding design requirements.
To be able to argue on mechanical design requirements in a comprehensive manner.
Inhalt1) Introduction and Engine Classes
2) Rotor and Combustor Design
3) Rotor Dynamics
4) Excursion
5) Blade Dynamics
6) Blade and Vane Attachments
7) Bearings and Seals
8) Gears and Lubrication
9) Spectrum Analysis
10) Balancing and Lifing
11) Couplings and Alignment
12) Control Systems and Instrumentation
13) Maintenance Techniques
SkriptDownload during semester.
LiteraturLiterature and internet links are given in downloadable slides.
Voraussetzungen / Besonderes4 - 5 Exercises
Excursion to a gas turbine manufacturer.

REQUIRED knowledge of the lectures:
1) Thermodynamics III
2) Mechanics knowledge equivalent to Bachelor's degree

RECOMMENDED knowledge of one or more of the lectures:
1) Aerospace Propulsion
2) Turbomachinery Design
3) Gasturbinen: Prozesse und Verbrennungssysteme
151-0215-00LIntroduction to Acoustics, Aeroacoustics and ThermoacousticsW4 KP3GN. Noiray
KurzbeschreibungThis course provides an introduction to Acoustics. The focus will be on phenomena that are relevant for industrial and transport applications in the contexts of noise pollution and mechanical fatigue due to acoustic-structure interactions. It should be noted that the lecture focuses on the derivation and interpretation of analytical expression to explain various acoustic phenomena.
LernzielThis course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and quantify sound generation, absorption and propagation in configurations that are relevant for practical industrial applications (for example in aeronautics, automotive industry or power plants).
InhaltFirst, orders of magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadrupole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, coherent vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods used to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers). Modeling strategies to predict self-sustained acoustic oscillations driven by reacting and non-reacting flows are presented. Finally, guidelines to design active and passive control systems are given.
SkriptHandouts will be distributed during the class
LiteraturBooks will be recommended for each chapter
151-0224-00LSynthesis Fuel Engineering
Findet dieses Semester nicht statt.
W4 KP3V
KurzbeschreibungThis course will cover current and prospective chemical fuel technologies. It addresses both fossil and renewable resources technologies.
LernzielDevelop a basic understanding of the many convential and renewable fuel synthesis and processing technollogies.
InhaltFuels overview including fuel utilization and economics. Conventional fuel module will cover fuel synthesis, refining and upgrading technologies. Renewable fuel module will cover fule synthesis via photo-, electro-, and thermochemical H2O and CO2 splitting and biomass conversion technologies.
SkriptWill be available electronically.
LiteraturA) Synthetic Fuels Handbook: Properties, Process and Performace, J.G. Speight, Ed McGraw Hill, 2008; B) Synthetic Fuels, R.F. Probstein and R.E. Hicks, Ed. Dover Publications, 2006; C) Fischer-Tropsch Refining, Arno de Klerk, Ed. Wiley-VCH, 2011; D) Modeling and Simulation of Catalytic Reactors for Petroleum Refining, J. Ancheyta, Ed. Wiley, 2011.
Voraussetzungen / BesonderesA fundamental understanding of chemistry and engineering is strongly recommended.
151-0226-00LEnergy and Transport FuturesW4 KP3GK. Boulouchos, P. J. de Haan van der Weg, G. Georges
KurzbeschreibungThe course teaches to view local energy solutions as part of the larger energy system. Because it powers all sectors, local changes can have consequences reaching well beyond one sector. While we explore all sectors, we put a particular emphasis on mobility and its unique challenges. We not only cover engineering aspects, but also policymaking and behavioral economics.
LernzielThe main objectives of this lecture are:
(i) Systemic view on the Energy Sytem with emphasis on Transport Applications
(ii) Students can assess the reduction of energy demand (or greenhouse gas emissions) of sectoral solutions.
(iii) Students understand the advantages and disadvantages of technology options in mobility, and have a basic overview over those in other sectors
(iv) Students know policy tools to affect change in mobility, and understand the rebound effect.
InhaltThe course describes the role of energy system plays for the well-being of modern societies, and drafts a future energy system based on renewable energy sources, able to meet the demands of the sectors building, industry and transport. The projected Swiss energy system is used as an example. Students learn how all sectoral solutions feedback on the whole system and how sector coupling could lead to optimal transformation paths. The course then focuses on the history, status quo and technical potentials of the transport sector. Policy mixes to reduce energy demand and CO2 emissions from transport are introduced. Both direct and indirect effects of different policy types are discussed. Concepts from behavioral economics (car purchase behavior and rebound effects) are presented.

Preliminary schedule:
1 Introduction: Energy and Society
2 Global Energy System of Planet Earth
3 Challenges Ahead: Climate, Environment, Security of Supply
4 Buildings and Industrial Processes
5 Power Generation
6 Transport Sector (All modes)
7 Sector Coupling – A system approach for optimal design
8 Status Quo and Historic Development of Mobility
9 Vehicle Technology – Useful Energy
10 Powertrain Technology Paths
11 Energy Infrastructure for Transport
12 Technology diffusion and policy instruments
13 Current transport policies in the EU and in Switzerland
14 Effects and side-effects of current policies
Skriptt.b.d.
Literaturt.b.d.
151-0252-00LGasturbinen: Prozesse und Verbrennungssysteme Information W4 KP2V + 1UP. Jansohn
KurzbeschreibungGasturbinen werden in verschiedensten Anwendungsbereichen eingesetzt (u.a. Stromerzeugung und Flugtriebwerke) und bieten neben hohen Wirkungsgraden den Vorteil, sehr schadstoffarm betrieben werden zu können. Verbrennungskonzepte (magere Vormisch-Verbrennung) müssen unter allen Betriebsbedingungen die Stabilität der Wärmefreisetzung und eine geringe Schadstoffbildung (NOx, CO) sicherstellen.
LernzielVertraut werden mit den Grundlagen der Verbrennung in Gasturbinen verschiedener Ausführungen; Kenntnisse über verschiedene Gasturbinen-Prozesse und Anwendungs-Gebiete;
Auslegungs-Kriterien und Ausführungsformen von Gasturbinen-Brennkammern und Brennern; Verbrennungs-Technologien für gasturbinen-spezifische Bedingungen; Emissionscharakteristik von Gasturbinen (NOx, CO, Russ); Flammenstabilität und Thermoakustik; spezifische Verbrennungseigenschaften von Gasturbinen-Brennstoffen
InhaltGasturbinen-Typen und Anwendungen
- Flugzeuggasturbinen, stationaere Gasturbinen, mechan. Antriebe, Industrie-Gasturbinen, mobile Anwendungen.
Gasturbinen-Prozesse (thermodyn. Eigenschaften)
- Thermodynamische Zyklen, Wirkungsgrad, spezif. Leistung, Prozess-Parameter (Temp., Druck).
Energie-Bilanzen, Stoff-Flüsse
- Kompressionsarbeit, Expansionsarbeit, Wärmefreisetzung, Kühlluft-System, Abgas-Verluste.
Gasturbinen-Komponenten (Einführung, Grundlagen)
- Kompressoren, Brennkammer, Turbine, Wärmetauscher, ... .
Brenner-/Brennkammer-Systeme
- Gemischaufbereitung, Treibstoffe, Brennkammer-Geometrien, Brennerformen, Flammenstabilisierung, Wärmeübertragung/Kühlung, Emissionen.
Flammenstabilität und Thermoakustik.
Feuerungstechnologien
- magere Vormisch-Verbrennung, gestufte Verbrennung, Pilotierung, Drallflammen, Betriebskonzepte.
Neue Technologien/aktuelle Forschungsthemen
- katalyt. Verbrennung, "flammenlose" Verbrennung, "nasse" Verbrennung, Null-Emissions-Konzepte (mit CO2-Abscheidung)
SkriptFoliensammlung in Form einer gedruckten Broschüre (Selbstkostenpreis)
LiteraturEmpfehlungen für weitergehende Literatur im Skript enthalten (für jedes Kapitel/Themengebiet)
Voraussetzungen / BesonderesGrundwissen in Thermodynamik/thermodynamische Prozesse von thermischen Maschinen;
verbrennungstechnische Grundlagen
151-0254-00LIC-Engines and Propulsion Systems IIW4 KP2V + 1UK. Boulouchos, C. Barro, P. Dimopoulos Eggenschwiler
KurzbeschreibungTurbulente Strömung in Verbrennungsmotoren. Zündung, Vormischflamme, Klopfen in vorgemischten, fremdgezündeten Motoren (otto). Selbstzündende Dieselmotoren: Gemischbildung und HCCI Konzepten. Direkteinspritzung. Mechanismen bei der Bildung von Schadstoffemissionen (NOx, Partikel, Unverbrannte Kohlenwasserstoffen) und ihre Minimierung. Katalytische Abgasnachbehandlung für alle Schadstoffkategorien.
LernzielDie Studierenden kriegen einen weiteren Einblick in den Verbrennungsmotor anhand der in der Kurzbeschreibung aufgeführten Themen. Das Wissen wird angewandt in verschiedenen Rechenübungen und in die Praxis gebracht bei Laborübungen am Motorenprüfstand. Die Studierenden kriegen zusätzlich eine Einführung in die Abgasnachbehandlung.
SkriptDie zur Verfügung stehenden Folien sind gemischt auf deutsch und auf englisch.
LiteraturJ.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Mechanical Engineering
Voraussetzungen / BesonderesVorlesung auf Wunsch auf Englisch.

Diese Vorlesung ist eine Fortsetzung des ersten Teils 'IC-Engines and Propulsion Systems I' (151-0251-00L), dessen Inhalt vorausgesetzt wird.
Ein grundlegendes Verständnis von Thermodynamik und Verbrennung ist notwendig.
Es ist vorteilhaft die Vorlesung 'Combustion and Reactive Processes in Energy and Materials Technology' (151-0293-00L) besucht zu haben.
151-0262-00LLaser Diagnostics, Optical Measurement and Experimental InstrumentationW4 KP3GK. Herrmann
KurzbeschreibungThe focus of the course is optical measurement and laser diagnostics in engineering, particularly related to combustion research. The course also covers measurement instrumentation and application of sensors in experiments. Laboratory exercises provide hands-on experience and demonstrations of research test facilities illustrate the course content.
Lernziel- Understand fundamentals of instrumentation, data acquisition, processing and analysis
- Know how to apply sensors and probes in thermal and fluid engineering
- Get an overview of optical measurement techniques and laser diagnostics
- Obtain hands-on experience at experimental test facilities
InhaltI) Experiment instrumentation : measuring chain, signal- and data acquisition, processing and analysis
II) Probes and sensors: measurement principles, acquisition of velocity, force, pressure, temperature, etc. and specific optical sensors
III) Non-intrusive measurement techniques: passive/active optical and spectroscopic techniques for acquisition of flow (mixing, turbulence), sprays (droplets), flame (propagation) and concentration (chemical species)

Laboratory exercises (e.g. Michelson interferometer) give hands-on experience on optical measurement methods. Further practical courses demonstrate advanced measurement techniques at experimental research test facilities of other institutes or universities: laser-induced fluorescence (PSI), laser Doppler velocimetry (Empa) and IC engine test rig (FHNW).
SkriptPresentation slides are provided as handouts
LiteraturHecht E. "Optics", Addison Wesley, ISBN-13: 9780805385663
Settles G.S. "Schlieren and Shadowgraph Techniques", Springer, ISBN 13 978-3-540-66155-9
Demtröder W. "Laser Spectroscopy", Springer, ISBN 978-3-540-73415-4
Zhao H. "Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines", SAE, ISBN 978-0-7680-5782-9
Voraussetzungen / BesonderesSince the extensive exercises can't be performed in 1 h per week, please be prepared that a specific schedule needs to be set up - probably 5 exercises, each executed during one afternoon (2-3 h). Some exercises are also located at external research institutes (e.g. PSI, Empa) or universities (e.g. FHNW).
151-0280-00LAdvanced Techniques for the Risk Analysis of Technical Systems Information W4 KP2V + 1UG. Sansavini
KurzbeschreibungThe course provides advanced tools for the risk/vulnerability analysis and engineering of complex technical systems and critical infrastructures. It covers application of modeling techniques and design management concepts for strengthening the performance and robustness of such systems, with reference to energy, communication and transportation systems.
LernzielStudents will be able to model complex technical systems and critical infrastructures including their dependencies and interdependencies. They will learn how to select and apply appropriate numerical techniques to quantify the technical risk and vulnerability in different contexts (Monte Carlo simulation, Markov chains, complex network theory). Students will be able to evaluate which method for quantification and propagation of the uncertainty of the vulnerability is more appropriate for various complex technical systems. At the end of the course, they will be able to propose design improvements and protection/mitigation strategies to reduce risks and vulnerabilities of these systems.
InhaltModern technical systems and critical infrastructures are complex, highly integrated and interdependent. Examples of these are highly integrated energy supply, energy supply with high penetrations of renewable energy sources, communication, transport, and other physically networked critical infrastructures that provide vital social services. As a result, standard risk-assessment tools are insufficient in evaluating the levels of vulnerability, reliability, and risk.
This course offers suitable analytical models and computational methods to tackle this issue with scientific accuracy. Students will develop competencies which are typically requested for the formation of experts in reliability design, safety and protection of complex technical systems and critical infrastructures.
Specific topics include:
- Introduction to complex technical systems and critical infrastructures
- Basics of the Markov approach to system modeling for reliability and availability analysis
- Monte Carlo simulation for reliability and availability analysis
- Markov Chain Monte Carlo for applications to reliability and availability analysis
- Dependent, common cause and cascading failures
- Complex network theory for the vulnerability analysis of complex technical systems and critical infrastructures
- Basic concepts of uncertainty and sensitivity analysis in support to the analysis of the reliability and risk of complex systems under incomplete knowledge of their behavior
Practical exercitations and computational problems will be carried out and solved both during classroom tutorials and as homework.
SkriptSlides and other materials will be available online
LiteraturThe class will be largely based on the books:
- "Computational Methods For Reliability And Risk Analysis" by E. Zio, World Scientific Publishing Company
- "Vulnerable Systems" by W. Kröger and E. Zio, Springer
- additional recommendations for text books will be covered in the class
Voraussetzungen / BesonderesFundamentals of Probability
151-0530-00LNonlinear Dynamics and Chaos II Information W4 KP4GG. Haller
KurzbeschreibungThe internal structure of chaos; Hamiltonian dynamical systems; Normally hyperbolic invariant manifolds; Geometric singular perturbation theory; Finite-time dynamical systems
LernzielThe course introduces the student to advanced, comtemporary concepts of nonlinear dynamical systems analysis.
InhaltI. The internal structure of chaos: symbolic dynamics, Bernoulli shift map, sub-shifts of finite type; chaos is numerical iterations.

II.Hamiltonian dynamical systems: conservation and recurrence, stability of fixed points, integrable systems, invariant tori, Liouville-Arnold-Jost Theorem, KAM theory.

III. Normally hyperbolic invariant manifolds: Crash course on differentiable manifolds, existence, persistence, and smoothness, applications.
IV. Geometric singular perturbation theory: slow manifolds and their stability, physical examples. V. Finite-time dynamical system; detecting Invariant manifolds and coherent structures in finite-time flows
SkriptStudents have to prepare their own lecture notes
LiteraturBooks will be recommended in class
Voraussetzungen / BesonderesNonlinear Dynamics I (151-0532-00) or equivalent
151-0928-00LCO2 Capture and Storage and the Industry of Carbon-Based ResourcesW4 KP3GM. Mazzotti, L. Bretschger, R. Knutti, C. Müller, M. Repmann, T. Schmidt, D. Sutter
KurzbeschreibungCarbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment).
LernzielThe goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure.

The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned.
InhaltBoth the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production).
Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem.
The course is devided into four parts:
I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources.
II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics.
III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration.
IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry.
Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics.
SkriptPower Point slides and distributed handouts
LiteraturIPCC AR5 Climate Change 2014: Synthesis Report, 2014. Link

IPCC Special Report on Carbon dioxide Capture and Storage, 2005. Link

The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014.
Link
Voraussetzungen / BesonderesExternal lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester.
151-0946-00LMacromolecular Engineering: Networks and GelsW4 KP4GM. Tibbitt
KurzbeschreibungThis course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery.
LernzielThe main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience.
SkriptClass notes and handouts.
LiteraturPolymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts.
Voraussetzungen / BesonderesPhysics I+II, Thermodynamics I+II
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle