Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Energy Science and Technology Master Information
Kernfächer
Obligatorische Kernfächer
NummerTitelTypECTSUmfangDozierende
363-0514-00LEnergy Economics and Policy
It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example,"Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld.
O3 KP2GM. Filippini
KurzbeschreibungAn introduction to principles of energy economics and applications using energy policies: demand analysis, economic analysis of energy investments and cost analysis, economics of fossil fuels, economics of electricity, economics of renewable energy, market and behavioral failures and energy policy, market-based and non-market based instruments and regulation of energy industries.
LernzielThe students will develop the understanding of economic principles and tools necessary to analyze energy issues and to formulate energy policy instruments. Emphasis will be put on empirical analysis of energy demand and supply, market failures, behavioral economics, energy policy instruments, investments in power plants and in energy efficiency technologies and the reform of the electric power sector.
InhaltThe course provides an introduction to energy economics principles and policy applications. The core topics are
-Demand analysis
-Behavioral analysis of the energy sector
-Economic analysis of energy investments and cost analysis
-Economics of fossil fuels
-Economics of electricity
-Economics of renewable energies
-Market failures and energy policy
-Market oriented and non-market oriented instruments
-Regulation of energy industries
Literatur-Bhattacharyya, S. C. (2011). Energy Economics: Concepts, Issues, Markets and Governance. Springer

-Thomas J. and Callan S. (2010), Environmental Economics: Applications, Policy and Theory. 5th Edition, South-Western, Cengage Learning

-Hackett, Steven C. (2010) Environmental and natural resources economics: Theory, policy, and the sustainable society. ME Sharpe
Voraussetzungen / BesonderesIt is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example, "Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld.
Wählbare Kernfächer
These courses are particularly recommended, other ETH-courses from the field of Energy Science and Technology at large may be chosen in accordance with your tutor.
NummerTitelTypECTSUmfangDozierende
101-0206-00LWasserbauW5 KP4GR. Boes
KurzbeschreibungWasserbauliche Systeme, Anlagen und Bauwerke (z.B. Talsperren, Fassungen, Stollen, Leitungen, Kanäle, Wehre, Krafthäuser, Schleusen), Grundlagen des Flussbaus und der Naturgefahren
LernzielKenntnis wasserbaulicher Anlageteile und ihrer Funktion innerhalb wasserbaulicher Systeme; Befähigung zu Entwurf und Dimensionierung hinsichtlich Gebrauchstauglichkeit, Sicherheit und Wirtschaftlichkeit
InhaltWasserbauliche Systeme: Speicher, Nieder- und Hochdruckanlagen.
Wehre: Wehrarten, Verschlüsse, Hydraulische Bemessung.
Fassungen: Fassungstypen, Entsandungsanlagen.
Kanäle: konstruktive Gestaltung, offene und geschlossene Kanäle.
Leitungen: Auskleidungstypen, hydraulische Bemessung von Druckstollen und Druckschächten.
Talsperren: Talsperrentypen, Nebenanlagen.
Flussbau: Abflussberechnung, Sedimenttransport, flussbauliche Massnahmen.
Naturgefahren: Überblick und Grundlagen zu Art und Schutzmassnahmentypen.
Verkehrswasserbau: Schifffahrtskanäle und Schleusen.
Schriftliche Übungen, Übung im hydraulischen Labor und am Computer.
Exkursion.
SkriptUmfassendes Wasserbau-Skript.
Ergänzende Vorlesungsunterlagen.
Literaturweiterführende Literatur ist am Ende des jeweiligen Skript-Kapitels angegeben. Empfehlenswerte Fachbücher:
- Giessecke, J., Heimerl, S. & Mosonyi, E. (2014): Wasserkraftanlagen (6. Auflage), Springer-Verlag, Berlin
- Patt, H. & Gonsowsky, P. (2011): Wasserbau (7. Auflage), Springer-Verlag, Berlin
- Bollrich, G. (2000): Technische Hydromechanik, Verlag für Bauwesen, Berlin
- Strobl, T., Zunic, F. (2006): Wasserbau, Springer-Verlag, Berlin, Heidelberg.
- Hager, W.H., Schleiss, A.J. (2009): Constructions Hydrauliques; Traité de Génie Civil, Vol. 15, Presses Polytechniques et Universitaires Romandes, Lausanne.
Voraussetzungen / Besonderesals Grundlage dringend empfohlen: Hydraulik I (Vorlesung 101-0203)
101-0588-01LRe-/Source the Built EnvironmentW3 KP2SG. Habert
KurzbeschreibungRe/source the built environment focuses on the material choice one need to do in the construction sector and, through a serie of guest lecture presenting specific technologies, this course wants to present options to tackle the global challenge we are facing and show that "it is not too late".
LernzielAfter the lecture series, the students are aware of the main challenges for the production and use of building materials.

They know the different technologies/propositions available.

They understand in which conditions/context one resource/technology will be more appropriate than another
InhaltA general presentation of the global context allows to identify the objectives that as engineer, material scientist or architect one need to achieve to create a sustainable built environment.

The course is then conducted as a serie of guest lectures focusing on one specific technology to tackle this global challenge and show that "it is not too late".

The lecture series is divided as follows:
Lectures 1 to 2: General presentation.
Notion of resource depletion, criticality, decoupling

In a second phase 3 to10: Guest lectures covering different resources and proposing different option to build or maintain a sustainable built environment.
SkriptFor each lecture slides will be provided.
Voraussetzungen / BesonderesThe lecture series will be conducted in English and is aimed at students of master's programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and USYS.

No lecture will be given during Seminar week.
151-0160-00LNuclear Energy SystemsW4 KP2V + 1UH.‑M. Prasser, I. Günther-Leopold, W. Hummel, P. K. Zuidema
KurzbeschreibungKernenergie und Nachhaltigkeit, Urangewinnung, Urananreicherung, Kernbrennstoffherstellung, Wiederaufarbeitung ausgedienter Brennelemente, Entsorgung von radioaktivem Abfall, Lebenszyklusanalyse, Energie- und Stoffbilanzen von Kernkraftwerken.
LernzielDie Studenten erhalten einen Überblick über die physikalisch-chemischen Grundlagen, die technologischen Prozesse und die Entwicklungstrends in Bereich der gesamten nuklearen Energieumwandlungskette. Sie werden in die Lage versetzt, die Potentiale und Risiken der Einbettung der Kernenergie in ein komplexes Energiesystem einzuschätzen.
Inhalt(1) Überblick über den kosmischen und geologischen Ursprung von Uranvorkommen, Methoden des Uranbergbaus, der Urangewinnung aus dem Erz, (2) Urananreicherung (Diffusionszellen, Ultrazentrifugen, alternative Methoden), chemische Konvertierung Uranoxid - Fluorid - Oxid, Brennelementfertigung, Abbrand im Reaktor. (3) Wiederaufarbeitung abgebrannter Brennelemente (hydro- und pyrochemisch) einschliesslich der modernen Verfahren der Tiefentrennung hochaktiver Abfälle, Methoden der Minimierung von Menge und Radiotoxizität des nuklearen Abfalls, (4) Entsorgung von Nuklearabfall, Abfallkategorien und -herkunft, geologische und künstliche Barrieren in Tiefenlagern und deren Eigenschaften, Projekt für ein geologisches Tiefenlager für radioaktive Abfälle in der Schweiz, (5) Methoden zur Ermittlung der Nachhaltigkeit von Energiesystemen, Masse der Nachhaltigkeit, Vergleich der Kernenergie mit anderen Energieumwandlungstechnologien, Umwelteinfluss des Kernenergiesystems als Ganzes, spezieller Aspekt CO2-Emissionen, CO2-Reduktionskosten. Die Materialbilanzen unterschiedlicher Varianten des Brennstoffzyklus werden betrachtet.
SkriptVorlesungsfolien werden verteilt und in digitaler Form bereit gestellt.
151-0204-00LAerospace PropulsionW4 KP2V + 1UR. S. Abhari, N. Chokani
KurzbeschreibungIn this course, an introduction of working principals of aero-engines and the related background in aero- and thermodynamics is presented. System as well as component engineering aspects of engine design are examined.
LernzielIntroduction of working principals of aero-engines and the related background in aero- and thermodynamics. Engineering aspects of engine design.
InhaltThis course focuses on the fundamental concepts as well as the applied technologies for aerospace application, with a primary focus related to aviation. The systematic evolution of the aircraft propulsion engines, from turbojet to the modern high bypass ratio turbofan, including the operational limitations, are examined. Following the system analysis, the aerodynamic design of each component, including the inlet, fan, compressor, combustors, turbines and exhaust nozzles are presented. The mechanical and material limitations of the modern designed are also discussed. The environmental aspects of propulsion (noise and emissions) are also presented. In the last part of the course, a basic introduction to the fundamentals of space propulsion is also presented.
SkriptVorlesungsunterlagen werden verteilt
151-0206-00LEnergy Systems and Power EngineeringW4 KP2V + 2UR. S. Abhari, A. Steinfeld
KurzbeschreibungIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
LernzielIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
InhaltWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the -art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal power generation and solar photovoltaics. Hydrogen as energy carrier. Fuel cells: characteristics, fuel reforming and combined cycles. Nuclear power plant technology.
SkriptVorlesungsunterlagen werden verteilt
151-0211-00LConvective Heat Transport
Findet dieses Semester nicht statt.
W5 KP4GH. G. Park
KurzbeschreibungThis course will teach the field of heat transfer by convection. This heat transport process is intimately tied to fluid dynamics and mathematics, meaning that solid background in these disciplines are necessary. Convection has direct implications in various industries, e.g. microfabrication, microfluidics, microelectronics cooling, thermal shields protection for space shuttles.
LernzielAdvanced introduction to the field of heat transfer by convection.
InhaltThe course covers the following topics:
1. Introduction: Fundamentals and Conservation Equations 2. Laminar Fully Developed Velocity and Temperature Fields 3. Laminar Thermally Developing Flows 4. Laminar Hydrodynamic Boundary Layers 5. Laminar Thermal Boundary Layers 6. Laminar Thermal Boundary Layers with Viscous Dissipation 7. Turbulent Flows 8. Natural Convection.
SkriptLecture notes will be delivered in class via note-taking. Textbook serves as a great source of the lecture notes.
LiteraturText:
(Main) Kays and Crawford, Convective Heat and Mass Transfer, McGraw-Hill, Inc.
(Secondary) A. Bejan, Convection Heat Transfer
References:
Incropera and De Witt, Fundamentals of Heat and Mass Transfer, or Introduction to Heat Transfer Kundu and Cohen, Fluid Mechanics, Academic Press V. Arpaci, Convection Heat Transfer
151-0214-00LTurbomachinery Mechanics and Dynamics
Prerequisites of this course are listed under "catalogue data".
W4 KP3GA. Zemp
KurzbeschreibungDesigning gas turbines means to translate the aerodynamic and thermodynamic intentions into a system, which is both mechanically sound and manufacturable at reasonable cost. This lecture is aimed at giving a comprehensive overview of the mechanical and design requirements, which must be fulfilled by a safe and reliable machine. Material and life prediction methods will be addressed as well.
LernzielTo understand the mechanical behaviour of the mechanical systems of gas turbines.
To know the risks of mechanical and thermomechanical malfunctions and the corresponding design requirements.
To be able to argue on mechanical design requirements in a comprehensive manner.
Inhalt1) Introduction and Engine Classes
2) Rotor and Combustor Design
3) Rotor Dynamics
4) Excursion
5) Blade Dynamics
6) Blade and Vane Attachments
7) Bearings and Seals
8) Gears and Lubrication
9) Spectrum Analysis
10) Balancing and Lifing
11) Couplings and Alignment
12) Control Systems and Instrumentation
13) Maintenance Techniques
SkriptDownload during semester.
LiteraturLiterature and internet links are given in downloadable slides.
Voraussetzungen / Besonderes4 - 5 Exercises
Excursion to a gas turbine manufacturer.

REQUIRED knowledge of the lectures:
1) Thermodynamics III
2) Mechanics knowledge equivalent to Bachelor's degree

RECOMMENDED knowledge of one or more of the lectures:
1) Aerospace Propulsion
2) Turbomachinery Design
3) Gasturbinen: Prozesse und Verbrennungssysteme
151-0226-00LEnergy and Transport FuturesW4 KP3GK. Boulouchos, P. J. de Haan van der Weg, G. Georges
KurzbeschreibungThe course teaches to view local energy solutions as part of the larger energy system. Because it powers all sectors, local changes can have consequences reaching well beyond one sector. While we explore all sectors, we put a particular emphasis on mobility and its unique challenges. We not only cover engineering aspects, but also policymaking and behavioral economics.
LernzielThe main objectives of this lecture are:
(i) Systemic view on the Energy Sytem with emphasis on Transport Applications
(ii) Students can assess the reduction of energy demand (or greenhouse gas emissions) of sectoral solutions.
(iii) Students understand the advantages and disadvantages of technology options in mobility, and have a basic overview over those in other sectors
(iv) Students know policy tools to affect change in mobility, and understand the rebound effect.
InhaltThe course describes the role of energy system plays for the well-being of modern societies, and drafts a future energy system based on renewable energy sources, able to meet the demands of the sectors building, industry and transport. The projected Swiss energy system is used as an example. Students learn how all sectoral solutions feedback on the whole system and how sector coupling could lead to optimal transformation paths. The course then focuses on the history, status quo and technical potentials of the transport sector. Policy mixes to reduce energy demand and CO2 emissions from transport are introduced. Both direct and indirect effects of different policy types are discussed. Concepts from behavioral economics (car purchase behavior and rebound effects) are presented.

Preliminary schedule:
1 Introduction: Energy and Society
2 Global Energy System of Planet Earth
3 Challenges Ahead: Climate, Environment, Security of Supply
4 Buildings and Industrial Processes
5 Power Generation
6 Transport Sector (All modes)
7 Sector Coupling – A system approach for optimal design
8 Status Quo and Historic Development of Mobility
9 Vehicle Technology – Useful Energy
10 Powertrain Technology Paths
11 Energy Infrastructure for Transport
12 Technology diffusion and policy instruments
13 Current transport policies in the EU and in Switzerland
14 Effects and side-effects of current policies
Skriptt.b.d.
Literaturt.b.d.
151-0254-00LIC-Engines and Propulsion Systems IIW4 KP2V + 1UK. Boulouchos, C. Barro, P. Dimopoulos Eggenschwiler
KurzbeschreibungTurbulente Strömung in Verbrennungsmotoren. Zündung, Vormischflamme, Klopfen in vorgemischten, fremdgezündeten Motoren (otto). Selbstzündende Dieselmotoren: Gemischbildung und HCCI Konzepten. Direkteinspritzung. Mechanismen bei der Bildung von Schadstoffemissionen (NOx, Partikel, Unverbrannte Kohlenwasserstoffen) und ihre Minimierung. Katalytische Abgasnachbehandlung für alle Schadstoffkategorien.
LernzielDie Studierenden kriegen einen weiteren Einblick in den Verbrennungsmotor anhand der in der Kurzbeschreibung aufgeführten Themen. Das Wissen wird angewandt in verschiedenen Rechenübungen und in die Praxis gebracht bei Laborübungen am Motorenprüfstand. Die Studierenden kriegen zusätzlich eine Einführung in die Abgasnachbehandlung.
SkriptDie zur Verfügung stehenden Folien sind gemischt auf deutsch und auf englisch.
LiteraturJ.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Mechanical Engineering
Voraussetzungen / BesonderesVorlesung auf Wunsch auf Englisch.

Diese Vorlesung ist eine Fortsetzung des ersten Teils 'IC-Engines and Propulsion Systems I' (151-0251-00L), dessen Inhalt vorausgesetzt wird.
Ein grundlegendes Verständnis von Thermodynamik und Verbrennung ist notwendig.
Es ist vorteilhaft die Vorlesung 'Combustion and Reactive Processes in Energy and Materials Technology' (151-0293-00L) besucht zu haben.
151-0928-00LCO2 Capture and Storage and the Industry of Carbon-Based ResourcesW4 KP3GM. Mazzotti, L. Bretschger, R. Knutti, C. Müller, M. Repmann, T. Schmidt, D. Sutter
KurzbeschreibungCarbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment).
LernzielThe goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure.

The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned.
InhaltBoth the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production).
Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem.
The course is devided into four parts:
I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources.
II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics.
III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration.
IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry.
Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics.
SkriptPower Point slides and distributed handouts
LiteraturIPCC AR5 Climate Change 2014: Synthesis Report, 2014. Link

IPCC Special Report on Carbon dioxide Capture and Storage, 2005. Link

The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014.
Link
Voraussetzungen / BesonderesExternal lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester.
151-0310-00LModel Predictive Engine Control Belegung eingeschränkt - Details anzeigen
Number of participants limited to 50.
W4 KP2V + 1UT. Albin Rajasingham
KurzbeschreibungFor efficient and stable operation of an internal combustion engine a multitude of complex control tasks have to be handled. In this lecture the application of model predictive control for these control challenges is introduced.
Lernziel- Learn how to design and implement model predictive control algorithms for the example system “combustion engine”. Get to know the entire process from simulation-based control development to the application at a real-world combustion engine.
- Deepen the knowledge concerning the necessary control algorithms for a combustion engine.
Inhalt- Physical phenomena and models for processes of the combustion engine such as air path and fuel path
- Analysis of the control tasks arising in engine systems
- Case studies for the application of model predictive control for combustion engines with the goal to handle the complex, multivariable system dynamics
- Fundamentals of the implementation of model predictive control
SkriptLecture slides will be provided after each lecture.
LiteraturL. Guzzella / C. Onder: "Introduction to Modeling and Control of Internal Combustion Engine Systems", J. Maciejowski: "Predictive Control with Constraints"
Voraussetzungen / BesonderesEngine Systems (recommended).
227-0117-10LHochspannungstechnik I: Mess- und Versuchstechnik Information W6 KP4GC. Franck, H.‑J. Weber
KurzbeschreibungEinführung in die Versuchs- und Messtechnik, wie sie Grundlage in allen Bereichen der Ingenieurswissenschaften ist. Die Vorlesung ist stark praxis- und anwendungsorientiert, und beinhaltet mehrere praktische Versuche. Die Inhalte «Mess- und Versuchstechnik» sind für alle Fachgebiete relevant, in dieser Vorlesung werden sie im Rahmen der Hochspannungstechnik behandelt.
LernzielAm Ende der Vorlesung können die Studierenden:
• grundlegende elektrische Versuche durchführen und Messdaten, insbesondere mit dem Oszilloskop, erheben.
• ein sinnvolles Messprotokoll führen, ein klares Versuchsprotokoll erstellen und die Messgenauigkeit des Versuchs abschätzen.
• grundlegende Ursachen elektromagnetischer Störungen sowie Methoden zur Vermeidung, Reduktion oder Abschirmung beschreiben und anwenden.
• verschiedene Methoden zur Erzeugung und Messung von hohen Spannungen erklären und anwenden, sowie dazugehörende Grössen berechnen.
Inhalt- Messtechnik, Messunsicherheit, Messprotokolle
- Erzeugung und Messung hoher Spannungen
- Elektromagnetische Verträglichkeit
- Laborpraktika
SkriptVorlesungsunterlagen
LiteraturJ. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719)
A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994)
A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099)
227-0248-00LPower Electronic Systems II Information W6 KP4GJ. W. Kolar
KurzbeschreibungThis course details structures, operating ranges, and control concepts of modern power electronic systems to provide a deeper understanding of power electronic circuits and power components. Most recent concepts of high switching frequency AC/DC converters and AC/AC matrix inverters are presented. Simulation exercises, implemented in GeckoCIRCUITS, are used to consolidate the concepts discussed.
LernzielThe objective of this course is to convey knowledge of structures, operating ranges, and control concepts of modern power electronic systems. Further objectives are: to know most recent concepts and operation modes of high switching frequency AC/DC converters and AC/AC matrix inverters; to develop a deeper understanding of multi-pulse power converter circuits, transformers, and electromechanical energy converters; and to understand in-depth details of power electronic systems. Simulation exercises, implemented in the electric circuit simulator GeckoCIRCUITS, are used to consolidate the presented theoretical concepts.
InhaltConverter dynamics and control: State Space Averaging, transfer functions, controller design, impact of the input filter on the converter transfer functions.
Performance data of single-phase and three-phase systems: effect of different loss components on the efficiency characteristics, linear and non-linear single phase loads, power flow of general three-phase systems, space vector calculus.
Modeling and control of three-phase PWM rectifiers: system characterization using rotating coordinates, control structure, transfer functions, operation with symmetrical and unsymmetrical mains voltages.
Scaling laws of transformers and electromechanical actuators.
Drives with permanent magnet synchronous machines: basic function, modeling, field-oriented control.
Unidirectional AC/DC converters and AC/AC converters: voltage and current DC link converters, indirect and direct matrix converters.
SkriptLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Voraussetzungen / BesonderesPrerequisites: Introductory course on power electronics.
227-0528-00LPower System Dynamics, Control and Operation Information W6 KP4GG. Hug, A. Ulbig
KurzbeschreibungThe electric power system is a system that is never in steady state due to constant changes in load and generation inputs. This course is dedicated to the dynamical properties of the electric power grid including how the system state is estimated, generation/load balance is ensured by frequency control and how the system reacts in case of faults in the system. The course includes two excursions.
LernzielThe learning objectives of the course are to understand and be able to apply the dynamic modeling of power systems, to compute and discuss the actions of generators based on frequency control, to describe the workings of a synchronous machine and the implications on the grid, to describe and apply state estimation procedures, to discuss the IT infrastructure and protection algorithms in power systems.
InhaltThe electric power system is a system that is never in steady state due to constant changes in load and generation inputs. Consequently, the monitoring and operation of the electric power grid is a challenging task. The course starts with the introduction of general operational procedures and the discussion of state estimation which is an important tool to observe the state of the grid. The course is then dedicated to the modeling and studying of the dynamical properties of the electric power grid. Frequency control which ensures the generation/load balance in real time is the basis for real-time control and is presented in depth. For the analysis of how the system detects and reacts dynamically in fault situations, protection and dynamic models for synchronous machines are introduced.
SkriptLecture notes. WWW pages.
227-0529-00LLiberalized Electric Power Systems and Smart Grids Information W6 KP4GR. Bacher
KurzbeschreibungThis class begins by discussing the paths from monopolies towards liberalized electric power markets with the grid as natural monopoly. After going through detailed mainly transmission grid constrained market models, SmartGrids models and approaches are introduced for the future distribution grid.
Lernziel- Understanding the legal, physical and market based framework for transmission based electric power systems.
- Understanding the market models for a secure and market based day-ahead operation of Smart Power Systems.
- Understanding Smart Grids and their market-compatible models
- Gaining experience with the formulation, implementation and computation of constrained electricity markets for transmission and Smart distribution systems.
Inhalt- Legal conditions for the regulation and operation of electric power systems (CH, EU).
- Modelling physical laws, objectives and constraints of electric power systems at transmission and smart distribution level.
- Optimization as mathematical tool to achieve maximum society profits and considering at the same time grid based constraints and incentives towards distributed / renewable energy ressources.
- Various electricity market models, their advantages and disadvantages.
- SmartGrids: The new energy system and compatibility issues with traditional market models and regulation.
SkriptClass material is continuously updated and distributed to students.
Voraussetzungen / BesonderesRequirements: Programming in any language, Numerical analysis, basics for power system models, optimization and economics, active participation (discussions)

Mode of exam: examination may be computer-based
227-0530-00LOptimization in Energy SystemsW6 KP4GG. Hug, H. Abgottspon, M. Densing
KurzbeschreibungThe course covers various aspects of optimization with a focus on applications to energy networks and scheduling of hydro power. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches.
LernzielAfter this class, the students should have a good handle on how to approach a research question which involves optimization and implement and solve the resulting optimization problem by choosing appropriate tools.
InhaltIn our everyday’s life, we always try to take the decision which results in the best outcome. But how do we know what the best outcome will be? What are the actions leading to this optimal outcome? What are the constraints? These questions also have to be answered when controlling a system such as energy systems. Optimization theory provides the opportunity to find the answers by using mathematical formulation and solution of an optimization problem.
The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. The applications are focused on 1) the Optimal Power Flow problem which is formulated and solved to find optimal device settings in the electric power grid and 2) the scheduling problem of hydro power plants which in many countries, including Switzerland, dominate the electric power generation. On the theoretical side, the formulation and solving of unconstrained and constrained optimization problems, multi-time step optimization, stochastic optimization including probabilistic constraints and decomposed optimization (Lagrangian and Benders decomposition) are discussed.
227-0536-00LMultiphysics Simulations for Power Systems Information W3 KP2V + 1UJ. Smajic
KurzbeschreibungThe goals of this course are a) understanding the fundamentals of the electromagnetic, thermal, mechanical, and coupled field simulations and b) performing effective simulations of primary equipment of electric power systems. The course is understood complementary to 227-0537-00L "Technology of Electric Power System Components", but can also be taken separately.
LernzielThe student should learn the fundamentals of the electromagnetic, thermal, mechanical, and coupled fields simulations necessary for modern product development and research based on virtual prototyping. She / he should also learn the theoretical background of the finite element method (FEM) and its application to low- and high-frequency electromagnetic field simulation problems. The practical exercises of the course should be done by using one of the commercially available field simulation software (Infolytica, ANSYS, and / or COMSOL). After completing the course the student should be able to properly and efficiently use the software to simulate practical design problems and to understand and interpret the obtained results.
Inhalt1. Elektromagnetic Fields and Waves: Simulation Aspects (1 lecture, 2 hours)
a. Short review of the governing equations
b. Boundary conditions
c. Initial conditions
d. Linear and nonlinear material properties
e. Coupled fields (electro-mechanical and electro-thermal coupling)

2. Finite Element Method for elektromagnetic simulations (5 lectures and 3 exercises, 16 hours)
a. Scalar-FEM in 2-D (electrostatic, magnetostatic, eddy-currents, etc.)
b. Vector-FEM in 3-D (3-D eddy-currents, wave propagation, etc.)
c. Numerical aspects of the analysis (convergence, linear solvers, preconditioning, mesh quality, etc.)
d. Matlab code for 2-D FEM for learning and experimenting

3. Practical applications (5 lectures and 5 exercises, 20 hours)
a. Dielectric analysis of high-voltage equipment
b. Nonlinear quasi-electrostatic analysis of surge arresters
c. Eddy-currents analysis of power transformers
d. Electromagnetic analysis of electric machines
e. Very fast transients in gas insulated switchgears (GIS)
f. Electromagnetic compatibility (EMC)
227-0537-00LTechnology of Electric Power System Components Information W6 KP4GC. Franck
KurzbeschreibungBasics of the technology of important components in electric power transmission and distribution systems (primary technology).
LernzielAt the end of this course, the students can name the primary components of electric power systems and explain where and why they are used. For the most important components, the students can explain the working principle in detail and calculate and derive key parameters.
InhaltBasic physical and engineering aspects for transmission and distribution of electric power. Limiting boundary conditions are not only electrical parameters, but also mechanical, thermal, chemical, environmental and economical aspects.
The lecture covers the most important traditional components, but also new trends and the dimensioning of components.
Parts of the lecture will be held by external experts in the field and there will be excursions to industrial companies.

The course "Multiphysics Simulations for Power Systems 227-0536-00L" is aligned with the present course and considered complementary.
Skriptyes
Literaturadditional literature will be available online via the teaching document repository.
Voraussetzungen / BesonderesThe lecture "Electric Power Transmission: System & Technology" is a prerequisite.
227-0730-00LPower Market II - Modeling and Strategic PositioningW6 KP4GD. Reichelt, G. A. Koeppel
KurzbeschreibungOptionen in der Energiewirtschaft
Portfolio und Risiko Management: Hedging-Strategien und Risiko Bewertung
Optimierung und Hedging von Hydrokraftwerken
Bewertung von Kraftwerken mit Realoptionen
Kapazitätsmärkte und Quotensysteme
Komplexe Energielieferverträge mit Optionalitäten Strategische Positionierung von Energieversorgungsunternehmen
LernzielDie Studenten kennen die wesentlichen Derivate, die in der Elektrizitätswirtschaft zur Anwendung gelangen. Sie können Strategien zur Preisabsicherung erarbeiten bzw. bewerten. Sie verstehen die Optimierung von komplexen Wasserkraftwerksanlagen, kennen die Thematik der Kapazitätsmärkte und der Quotensysteme. Sie kennen die Grundlagen der Discounted Cash-flow (DCF) Methode sowie der Realoptionen und können sie für die Bewertung von Kraftwerken anwenden.
Die Studenten können komplexe Energielieferverträge in die einzelnen Komponenten zerlegen und die Risiken identifizieren.
InhaltOptionen in der Energiewirtschaft: Optionsbewertung mit Binominalen Bäumen und der Black-Scholes Formel, Sensitivitäten, implizite Volatilität
Portfolio und Risiko Management: Delta- und Gamma-neutrale Preisabsicherung, Vergleich und Bewertung von Hedging-Strategien, Risiko Identifikation und -bewertung (Fallbeispiel)
Optimierung und Hedging von Hydrokraftwerken
Bewertung von Kraftwerken, Projekten und el. Netzen mit der discounted cash-flow Methode und Anwendung von Realoptionen
Strategische Positionierung: Erarbeiten von verschiedenen Fällen (mini cases)
Kapazitätsmärkte und Quotensysteme
Anwendungen von Derivaten: komplexe Energielieferverträge mit Optionalitäten, flexible Produkte für Stromkunden
Quantifizieren des Gegenparteirisikos
Marketing des Produktes "Elektrizität"
SkriptHandouts - all material in English
Voraussetzungen / Besonderes2-tägige Exkursion, Referate von Vertretern aus der Wirtschaft

Moodle: Link
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle