Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Rechnergestützte Wissenschaften Master Information
Kernfächer
Von den im HS und FS angebotenen Kernfächern müssen mindestens zwei Lerneinheiten erfolgreich abgeschlossen werden.
NummerTitelTypECTSUmfangDozierende
401-3632-00LComputational StatisticsW10 KP3V + 2UM. H. Maathuis
KurzbeschreibungComputational Statistics deals with modern statistical methods of data analysis (aka "data science") for prediction and inference. The course provides an overview of existing methods. The course is hands-on, and methods are applied using the statistical programming language R.
LernzielIn this class, the student obtains an overview of modern statistical methods for data analysis, including their algorithmic aspects and theoretical properties. The methods are applied using the statistical programming language R.
Voraussetzungen / BesonderesAt least one semester of (basic) probability and statistics.

Programming experience is helpful but not required.
263-2300-00LHow To Write Fast Numerical Code Information Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Number of participants limited to 84.

Prerequisite: Master student, solid C programming skills.
W6 KP3V + 2UM. Püschel
KurzbeschreibungThis course introduces the student to the foundations and state-of-the-art techniques in developing high performance software for numerical functionality such as linear algebra and others. The focus is on optimizing for the memory hierarchy and for special instruction sets. Finally, the course will introduce the recent field of automatic performance tuning.
LernzielSoftware performance (i.e., runtime) arises through the interaction of algorithm, its implementation, and the microarchitecture the program is run on. The first goal of the course is to provide the student with an understanding of this interaction, and hence software performance, focusing on numerical or mathematical functionality. The second goal is to teach a general systematic strategy how to use this knowledge to write fast software for numerical problems. This strategy will be trained in a few homeworks and semester-long group projects.
InhaltThe fast evolution and increasing complexity of computing platforms pose a major challenge for developers of high performance software for engineering, science, and consumer applications: it becomes increasingly harder to harness the available computing power. Straightforward implementations may lose as much as one or two orders of magnitude in performance. On the other hand, creating optimal implementations requires the developer to have an understanding of algorithms, capabilities and limitations of compilers, and the target platform's architecture and microarchitecture.

This interdisciplinary course introduces the student to the foundations and state-of-the-art techniques in high performance software development using important functionality such as linear algebra functionality, transforms, filters, and others as examples. The course will explain how to optimize for the memory hierarchy, take advantage of special instruction sets, and, if time permits, how to write multithreaded code for multicore platforms. Much of the material is based on state-of-the-art research.

Further, a general strategy for performance analysis and optimization is introduced that the students will apply in group projects that accompany the course. Finally, the course will introduce the students to the recent field of automatic performance tuning.
Vertiefungsgebiete
Astrophysik
NummerTitelTypECTSUmfangDozierende
402-0394-00LTheoretical Astrophysics and Cosmology
Studierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das entsprechende Modul direkt an der UZH buchen.
W10 KP4V + 2UL. M. Mayer, J. Yoo
KurzbeschreibungThis is the second of a two course series which starts with "General Relativity" and continues in the spring with "Theoretical Astrophysics and Cosmology", where the focus will be on applying general relativity to cosmology as well as developing the modern theory of structure formation in a cold dark matter Universe.
Lernziel
InhaltThe course will cover the following topics:
- Homogeneous cosmology
- Thermal history of the universe, recombination, baryogenesis and nucleosynthesis
- Dark matter and Dark Energy
- Inflation
- Perturbation theory: Relativistic and Newtonian
- Model of structure formation and initial conditions from Inflation
- Cosmic microwave background anisotropies
- Spherical collapse and galaxy formation
- Large scale structure and cosmological probes
LiteraturSuggested textbooks:
H.Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution
S. Carroll: Space-Time and Geometry: An Introduction to General Relativity
S. Dodelson: Modern Cosmology
Secondary textbooks:
S. Weinberg: Gravitation and Cosmology
V. Mukhanov: Physical Foundations of Cosmology
E. W. Kolb and M. S. Turner: The Early Universe
N. Straumann: General relativity with applications to astrophysics
A. Liddle and D. Lyth: Cosmological Inflation and Large Scale Structure
Voraussetzungen / BesonderesKnowledge of General Relativity is recommended.
Atmosphärenphysik
NummerTitelTypECTSUmfangDozierende
701-1216-00LNumerical Modelling of Weather and Climate Information W4 KP3GC. Schär, U. Lohmann
KurzbeschreibungThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
LernzielThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
InhaltThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction.

Hands-on experience with simple models will be acquired in the tutorials.
SkriptSlides and lecture notes will be made available at
Link
LiteraturList of literature will be provided.
Voraussetzungen / BesonderesPrerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming
701-1232-00LRadiation and Climate ChangeW3 KP2GM. Wild, W. Ball
KurzbeschreibungThis lecture focuses on the prominent role of radiation in the energy balance of the Earth and in the context of past and future climate change.
LernzielThe aim of this course is to develop a thorough understanding of the fundamental role of radiation in the context of climate change.
InhaltThe course will cover the following topics:
Basic radiation laws; sun-earth relations; the sun as driver of climate change (faint sun paradox, Milankovic ice age theory, solar cycles); radiative forcings in the atmosphere: aerosol, water vapour, clouds; radiation balance of the Earth (satellite and surface observations, modeling approaches); anthropogenic perturbation of the Earth radiation balance: greenhouse gases and enhanced greenhouse effect, air pollution and global dimming; radiation-induced feedbacks in the climate system (water vapour feedback, snow albedo feedback); climate model scenarios under various radiative forcings.
SkriptSlides will be made available, lecture notes for part of the course
LiteraturAs announced in the course
701-1228-00LCloud Dynamics: Hurricanes Information W4 KP3GU. Lohmann
KurzbeschreibungHurricanes are among the most destructive elements in the atmosphere. This lecture will discuss the physical requirements for their formation, life cycle, damage potential and their relationship to global warming. It also distinguishes hurricanes from thunderstorms and tornadoes.
LernzielAt the end of this course students will be able to distinguish the formation and life cycle mechanisms of tropical cyclones from those of extratropical thunderstorms/cyclones, project how tropical cyclones change in a warmer climate based on their physics and evaluate different tropical cyclone modification ideas.
SkriptSlides will be made available
LiteraturA literature list can be found here: Link
Voraussetzungen / BesonderesAt least one introductory lecture in Atmospheric Science or Instructor's consent.
401-5930-00LSeminar in Physics of the Atmosphere for CSEW4 KP2SH. Joos, C. Schär
KurzbeschreibungIn this seminar the knowledge exchange between you and the other students is promoted. You attend lectures on scientific writing and you train your scientific writing skills by writing a proposal for your MSc thesis. You receive critical and constructive feedback through an in-depth review process by scientific writing experts and your future supervisors.
LernzielIn this seminar the knowledge exchange between you and the other students is promoted. You attend lectures on scientific writing and you train your scientific writing skills by writing a proposal for your MSc thesis. You receive critical and constructive feedback through an in-depth review process by scientific writing experts and your future supervisors.
Chemie
NummerTitelTypECTSUmfangDozierende
529-0474-00LQuantenchemieW6 KP3GM. Reiher, T. Weymuth
KurzbeschreibungEinführung in Konzepte der Elektronenstruktur-Theorie und in die Methoden der numerischen Quantenchemie; begleitende Übungen mit Papier und Bleistift, sowie Anleitungen zu praktischen Berechnungen mit Quantenchemie-Programmen am Computer.
LernzielChemie kann inzwischen vollständig am Computer betrieben werden, eine intellektuelle Leistung, für die 1998 der Nobelpreis an Pople und Kohn verliehen wurde. Diese Vorlesung zeigt, wie das geht. Erarbeitet wird dabei die Vielteilchen-Quantentheorie von Mehrelektronensystemen (Atome und Molekuele) und ihre Implementierung in Computerprogramme. Es soll ein vollständiges Bild der Quantenchemie vermittelt werden, das alles Rüstzeug zur Verfügung stellt, um selbst solche Berechnungen durchführen zu können (sei es begleitend zum Experiment oder als Start in eine Vertiefung dieser Theorie).
InhaltGrundlegende Konzepte der Vielteilchen-Quantenmechanik. Entwicklung der Mehrelektronentheorie für Atome und Molekuele; beginnend bei der harmonischen Naeherung für das Kern-Problem und bei der Hartree-Fock-Theorie für das elektronische Problem über Moeller-Plesset-Stroerungstheorie und Konfigurationswechselwirkung zu Coupled-Cluster und Multikonfigurationsverfahren. Dichtefunktionaltheorie. Verwendung quantenchemischer Software und Problemlösungen mit dem Computer.
SkriptEin Skript zu allen Vorlesungsstunden wird zur Verfügung gestellt (die aufgearbeitete Theorie wird durch praktische Beispiele kontinuierlich begleitet).
LiteraturLehrbücher:
F.L. Pilar, Elementary Quantum Chemistry, Dover Publications
I.N. Levine, Quantum Chemistry, Prentice Hall

Hartree-Fock in Basisdarstellung:
A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill

Bücher zur Computerchemie:
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons
C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons
Voraussetzungen / BesonderesVoraussetzungen:einführende Vorlesung in Quantenmechanik (z.B. Physikalische Chemie III: Quantenmechanik)
327-0613-00LComputer Applications: Finite Elements in Solids and Structures Information
The course will only take place if at least 7 students are enrolled.
W4 KP2V + 2UA. Gusev
KurzbeschreibungEinführung in die Finite-Elemente-Methode für Studenten mit einem allgemeinen Interesse an diesem Gebiet
LernzielEinführung in die Finite-Elemente-Methode für Studenten mit einem allgemeinen Interesse in diesem Gebiet
InhaltEinführung, Energieformulierungen, die Rayleigh-Ritz-Methode, Finite-Elemente der Verschiebungen, Lösungen zu den Finite-Elemente Gleichungen, Lineare Elemente, Konvergenz, Kompatibilität und Vollständigkeit, Finite Elemente höherer Ordnung, Beam- und Frame-Elemente, Plate- und Shell-Elemente, Dynamik und Vibrationen, Verallgemeinerung des Finite-Elemente-Konzeptes (Galerkin-weighted residual and variational approaches)
SkriptAutographie
Literatur- Astley R.J. Finite Elements in Solids and Structures, Chapman & Hill, 1992
- Zienkiewicz O.C., Taylor R.L. The Finite Element Method, 5th ed., vol. 1, Butterworth-Heinemann, 2000
401-5940-00LSeminar in Chemistry for CSEW4 KP2SP. H. Hünenberger, M. Reiher
KurzbeschreibungThe student will carry out a literature study on a topic of his or her liking or suggested by the supervisor in the area of computer simulation in chemistry, the results of which are to be presented both orally and in written form.

For more information: Link
Lernziel
Fluiddynamik
Eine der beiden Lerneinheiten
151-0208-00L Berechnungsmethoden der Energie- und Verfahrenstechnik
151-0212-00L Advanced CFD Methods
ist obligatorisch.
NummerTitelTypECTSUmfangDozierende
151-0208-00LBerechnungsmethoden der Energie- und VerfahrenstechnikO4 KP2V + 2UD. W. Meyer-Massetti
KurzbeschreibungEs werden numerische Methoden für Berechnungsaufgaben der Fluiddynamik, Energie- und Verfahrenstechnik dargestellt und an einfachen Beispielen auf dem Rechner geübt.
Inhalt: Problemlösungsprozess, physikalische und mathematische Modelle, Grundgleichungen, Diskretisierungsverfahren, numerische Lösung der Advektionsgleichung, Diffusionsgleichung und Poisson-Gleichung, turbulente Strömungen.
LernzielKenntnisse und praktische Erfahrungen mit der Anwendung der wichtigsten Diskretisierungs- und Lösungsverfahren für Berechnungsaufgaben der Fluiddynamik und der Energie- und Verfahrenstechnik
InhaltAufbauend auf den Lehrveranstaltungen über Fluiddynamik, Thermodynamik, Computational Methods for Engineering Application I (empfehlenswertes Wahlfach, 4. Semester) und Informatik (Programmieren) werden numerische Methoden für Berechnungsaufgaben der Fluiddynamik, Energie- und Verfahrenstechnik dargestellt und an einfachen Beispielen geübt.

1. Einleitung
Übersicht, Anwendungen
Problemlösungsprozess, Fehler
2. Rekapitulation der Grundgleichungen
Formulierung, Anfangs- und Randbedingungen
3. Numerische Diskretisierungsverfahren
Finite-Differenzen- und Finite-Volumen-Verfahren
Grundbegriffe: Konsistenz, Stabilität, Konvergenz
4. Lösung der grundlegenden Gleichungstypen
Wärmeleitungs/Diffusionsgleichung (parabolisch)
Poisson-Gleichung (elliptisch)
Advektionsgleichung/Wellengleichung (hyperbolisch)
und Advektions-Diffusions-Gleichung
5. Berechnung inkompressibler Strömungen
6. Berechnung turbulenter Strömungen
SkriptEin Skript steht zur Verfügung
Literaturwird zu Beginn der Vorlesung mitgeteilt
Voraussetzungen / BesonderesÜbungen:
Es werden theoretische und praktische (Programmier-)Aufgaben mit Anwendungen aus Fluiddynamik, Energie- und Verfahrenstechnik gestellt. Eine aktive Teilnahme ist unerlässlich.
Grundkenntnisse in Matlab sind von Vorteil.
151-0212-00LAdvanced CFD MethodsW4 KP2V + 1UP. Jenny
KurzbeschreibungFundamental and advanced numerical methods used in commercial and open-source CFD codes will be explained. The main focus is on numerical methods for conservation laws with discontinuities, which is relevant for trans- and hypersonic gas dynamics problems, but also CFD of incompressible flows, Direct Simulation Monte Carlo and the Lattice Boltzmann method are explained.
LernzielKnowing what's behind a state-of-the-art CFD code is not only important for developers, but also for users in order to choose the right methods and to achieve meaningful and accurate numerical results. Acquiring this knowledge is the main goal of this course.

Established numerical methods to solve the incompressible and compressible Navier-Stokes equations are explained, whereas the focus lies on finite volume methods for compressible flow simulations. In that context, first the main theory and then numerical schemes related to hyperbolic conservation laws are explained, whereas not only examples from fluid mechanics, but also simpler, yet illustrative ones are considered (e.g. Burgers and traffic flow equations). In addition, two less commonly used yet powerful approaches, i.e., the Direct Simulation Monte Carlo (DSMC) and Lattice Boltzmann methods, are introduced.

For most exercises a C++ code will have to be modified and applied.
Inhalt- Finite-difference vs. finite-element vs. finite-volume methods
- Basic approach to simulate incompressible flows
- Brief introduction to turbulence modeling
- Theory and numerical methods for compressible flow simulations
- Direct Simulation Monte Carlo (DSMC)
- Lattice Boltzmann method
SkriptPart of the course is based on the referenced books. In addition, the participants receive a manuscript and the slides.
Literatur"Computational Fluid Dynamics" by H. K. Versteeg and W. Malalasekera.
"Finite Volume Methods for Hyperbolic Problems" by R. J. Leveque.
Voraussetzungen / BesonderesBasic knowledge in
- fluid dynamics
- numerical mathematics
- programming (programming language is not important, but C++ is of advantage)
151-0110-00LCompressible FlowsW4 KP2V + 1UJ.‑P. Kunsch
KurzbeschreibungThemen: Instationäre eindimensionale Unterschall- und Überschallströmungen, Akustik, Schallausbreitung, Überschallströmung mit Stössen und Prandtl-Meyer Expansionen, Umströmung von schlanken Körpern, Stossrohre, Reaktionsfronten (Deflagration und Detonation).
Mathematische Werkzeuge: Charakteristikenverfahren, ausgewählte numerische Methoden.
LernzielIllustration der Physik der kompressiblen Strömungen und Üben der mathematischen Methoden anhand einfacher Beispiele.
InhaltDie Kompressibilität im Zusammenspiel mit der Trägheit führen zu Wellen in einem Fluid. So spielt die Kompressibilität bei instationären Vorgängen (Schwingungen in Gasleitungen, Auspuffrohren usw.) eine wichtige Rolle. Auch bei stationären Unterschallströmungen mit hoher Machzahl oder bei Überschallströmungen muss die Kompressibilität berücksichtigt werden (Flugtechnik, Turbomaschinen usw.).
In dem ersten Teil der Vorlesung wird die Wellenausbreitung bei eindimensionalen Unterschall- und Überschallströmungen behandelt. Es werden sowohl Wellen kleiner Amplitude in akustischer Näherung, als auch Wellen grosser Amplitude mit Stossbildung behandelt.

Der zweite Teil befasst sich mit ebenen stationären Überschallströmungen. Schlanke Körper in einer Parallelströmung werden als schwache Störungen der Strömung angesehen und können mit den Methoden der Akustik behandelt werden. Zu der Beschreibung der zweidimensionalen Überschallumströmung beliebiger Körper gehören schräge Verdichtungsstösse, Prandtl -Meyer Expansionen usw.. Unterschiedliche Randbedingungen (Wände usw.) und Wechselwirkungen, Reflexionen werden berücksichtigt.
Skriptnicht verfügbar
LiteraturEine Literaturliste mit Buchempfehlungen wird am Anfang der Vorlesung ausgegeben.
Voraussetzungen / BesonderesVoraussetzungen: Fluiddynamik I und II
401-5950-00LSeminar in Fluid Dynamics for CSE Belegung eingeschränkt - Details anzeigen W4 KP2SP. Jenny, T. Rösgen
KurzbeschreibungEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
LernzielEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Voraussetzungen / BesonderesContact Prof. P. Jenny or Prof. T. Rösgen before the beginning of the semester
Systems and Control
NummerTitelTypECTSUmfangDozierende
227-0216-00LControl Systems II Information W6 KP4GR. Smith
KurzbeschreibungIntroduction to basic and advanced concepts of modern feedback control.
LernzielIntroduction to basic and advanced concepts of modern feedback control.
InhaltThis course is designed as a direct continuation of the course "Regelsysteme" (Control Systems). The primary goal is to further familiarize students with various dynamic phenomena and their implications for the analysis and design of feedback controllers. Simplifying assumptions on the underlying plant that were made in the course "Regelsysteme" are relaxed, and advanced concepts and techniques that allow the treatment of typical industrial control problems are presented. Topics include control of systems with multiple inputs and outputs, control of uncertain systems (robustness issues), limits of achievable performance, and controller implementation issues.
SkriptThe slides of the lecture are available to download.
LiteraturSkogestad, Postlethwaite: Multivariable Feedback Control - Analysis and Design. Second Edition. John Wiley, 2005.
Voraussetzungen / BesonderesPrerequisites:
Control Systems or equivalent
227-0224-00LStochastic Systems Information W4 KP2V + 1UF. Herzog
KurzbeschreibungProbability. Stochastic processes. Stochastic differential equations. Ito. Kalman filters. St Stochastic optimal control. Applications in financial engineering.
LernzielStochastic dynamic systems. Optimal control and filtering of stochastic systems. Examples in technology and finance.
Inhalt- Stochastic processes
- Stochastic calculus (Ito)
- Stochastic differential equations
- Discrete time stochastic difference equations
- Stochastic processes AR, MA, ARMA, ARMAX, GARCH
- Kalman filter
- Stochastic optimal control
- Applications in finance and engineering
SkriptH. P. Geering et al., Stochastic Systems, Measurement and Control Laboratory, 2007 and handouts
227-0207-00LNonlinear Systems and Control Information
Voraussetzung: Control Systems (227-0103-00L)
W6 KP4GE. Gallestey Alvarez, P. F. Al Hokayem
KurzbeschreibungIntroduce students to the area of nonlinear systems and their control. Familiarize them with tools for modelling and analysis of nonlinear systems. Provide an overview of the various nonlinear controller design methods.
LernzielOn completion of the course, students understand the difference between linear and nonlinear systems, know the the mathematical techniques for modeling and analysing these systems, and have learnt various methods for designing controllers for these systems.
Course puts the student in the position to deploy nonlinear control techniques in real applications. Theory and exercises are combined for better understanding of virtues and drawbacks in the different methods.
InhaltVirtually all practical control problems are of nonlinear nature. In some cases the application of linear control methods will lead to satisfying controller performance. In many other cases however, only application of nonlinear analysis and synthesis methods will guarantee achievement of the desired objectives. During the past decades a number of mature nonlinear controller design methods have been developed and have proven themselves in applications. After an introduction of the basic methods for modelling and analysing nonlinear systems, these methods will be introduced together with a critical discussion of their pros and cons, and the students will be familiarized with the basic concepts of nonlinear control theory.

This course is designed as an introduction to the nonlinear control field and thus no prior knowledge of this area is required. The course builds, however, on a good knowledge of the basic concepts of linear control.
SkriptAn english manuscript will be made available on the course homepage during the course.
LiteraturH.K. Khalil: Nonlinear Systems, Prentice Hall, 2001.
Voraussetzungen / BesonderesPrerequisites: Linear Control Systems, or equivalent.
401-4938-14LStochastic Optimal Control Information
Findet dieses Semester nicht statt.
W4 KP2VM. Soner
KurzbeschreibungDynamic programming approach to stochastic optimal control problems will be developed. In addition to the general theory, detailed analysis of several important control problems will be given.
LernzielGoals are to achieve a deep understanding of

1. Dynamic programming approach to optimal control;
2. Several classes of important optimal control problems and their solutions.
3. To be able to use this models in engineering and economic modeling.
InhaltIn this course, we develop the dynamic programming approach for the stochastic optimal control problems. The general approach will be described and several subclasses of problems will also be discussed in including:
1. Standard exit time problems;
2. Finite and infinite horizon problems;
3. Optimal stoping problems;
4. Singular problems;
5. Impulse control problems.

After the general theory is developed, it will be applied to several classical problems including:
1. Linear quadratic regulator;
2. Merton problem for optimal investment and consumption;
3. Optimal dividend problem of (Jeanblanc and Shiryayev);
4. Finite fuel problem;
5. Utility maximization with transaction costs;
6. A deterministic differential game related to geometric flows.

Textbook will be

Controlled Markov Processes and Viscosity Solutions, 2nd edition, (W.H. Fleming and H.M. Soner) Springer-Verlag, (2005).

And lecture notes will be provided.
LiteraturControlled Markov Processes and Viscosity Solutions, 2nd edition, (W.H. Fleming and H.M. Soner) Springer-Verlag, (2005).

And lecture notes will be provided.
Voraussetzungen / BesonderesBasic knowledge of Brownian motion, stochastic differential equations and probability theory is needed.
401-5850-00LSeminar in Systems and Control for CSEW4 KP2SJ. Lygeros
KurzbeschreibungCourse based on individual study. Short projects involving literature review, possibly simple research tasks.
LernzielIntroduce students to state of the art research in systems and control.
Robotik
NummerTitelTypECTSUmfangDozierende
151-0854-00LAutonomous Mobile Robots Information W5 KP4GR. Siegwart, M. Chli, J. Nieto
KurzbeschreibungThe objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, envionmen perception, and probabilistic environment modeling, localizatoin, mapping and navigation. Theory will be deepened by exercises with small mobile robots and discussed accross application examples.
LernzielThe objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, envionmen perception, and probabilistic environment modeling, localizatoin, mapping and navigation.
SkriptThis lecture is enhanced by around 30 small videos introducing the core topics, and multiple-choice questions for continuous self-evaluation. It is developed along the TORQUE (Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness) concept, which is ETH's response to the popular MOOC (Massive Open Online Course) concept.
LiteraturThis lecture is based on the Textbook:
Introduction to Autonomous Mobile Robots
Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, Second Edition 2011, ISBN: 978-0262015356
  •  Seite  1  von  6 Nächste Seite Letzte Seite     Alle