Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Mathematik Bachelor Information
Basisjahr
» Ergänzende Fächer
» GESS Wissenschaft im Kontext
» Obligatorische Fächer des Basisjahres
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
Wird im Herbstsemester angeboten.
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-1262-07LAnalysis II Information O10 KP6V + 3UM. Einsiedler
KurzbeschreibungEinführung in die Differential- und Integralrechnung in mehreren reellen Veränderlichen, Vektoranalysis: Differential, partielle Ableitungen, Satz über implizite Funktionen, Umkehrsatz, Extrema mit Nebenbedingungen; Riemannsches Integral, Vektorfelder und Differentialformen, Wegintegrale, Oberflächenintegrale, Integralsätze von Gauss und Stokes.
Lernziel
InhaltMehrdimensionale Differential- und Integralrechnung; Kurven und Flächen im R^n; Extremalaufgaben; Mehrfache Integrale; Vektoranalysis.
LiteraturH. Amann, J. Escher: Analysis II
Link

J. Appell: Analysis in Beispielen und Gegenbeispielen
Link

R. Courant: Vorlesungen über Differential- und Integralrechnung
Link

O. Forster: Analysis 2
Link

H. Heuser: Lehrbuch der Analysis
Link

K. Königsberger: Analysis 2
Link

W. Walter: Analysis 2
Link

V. Zorich: Mathematical Analysis II (englisch)
Link
401-1152-02LLineare Algebra IIO7 KP4V + 2UM. Akveld
KurzbeschreibungEigenwerte und Eigenvektoren, Jordan-Normalform, Bilinearformen, Euklidische und Unitäre Vektorräume, ausgewählte Anwendungen.
LernzielVerständnis der wichtigsten Grundlagen der Linearen Algebra.
401-1652-10LNumerische Mathematik I Information O6 KP3V + 2UC. Schwab
KurzbeschreibungDieser Kurs gibt eine Einführung in numerische Methoden für Studierende der Mathematik im 2. Semester. Abgedeckt werden Methoden der linearen Algebra (lineare Gleichungssysteme, Matrixeigenwertprobleme) sowie der Analysis (Nullstellensuche von Funktionen sowie numerische Interpolation, Integration und Approximation) in Theorie und Implementierung.
LernzielKenntnis der grundlegenden numerischen Verfahren sowie `numerische Kompetenz':
Anwendung der numerischen Verfahren zur Problemloesung,
Mathematische Beweistechniken fuer den Nachweis von Stabilitaet, Konsistenz u. Konvergenz der Verfahren sowie deren MATLAB Implementierung.
InhaltRundungsfehler, lineare Gleichungssysteme, nichtlineare Gleichungen (Skalar und Systeme), Interpolation, Extrapolation, lineare und nichtlineare Ausgleichsrechnung, elementare Optimierungsverfahren, numerische Integration.
SkriptSkript zur Vorlesung sowie Leseliste sind auf der Webseite der Vorlesung verfügbar.
LiteraturSkript wird eingeschriebenen Studierenden des ETH BSc Mathematik zur
Verfuegung gestellt.
_Zusaetzlich_ wird empfohlen:
Quarteroni, Sacco und Saleri, Numerische Mathematik 1 + 2, Springer Verlag 2002.
Voraussetzungen / BesonderesZulassungsbedingungen:
Linear Algebra I , Analysis I in ETH BSc MATH
u. parallele Belegung von
Linear Algebra II, Analysis II in ETH BSc MATH

Woechentliche Hausuebungsserien sind integraler
Bestandteil des Kurses; die Hausuebungen
involvieren MATLAB Programmieraufgaben, u.
werden bewertet.
402-1782-00LPhysik II
Flankierend zur Vorlesung "Physik II" wird das folgende Fach aus GESS Wissenschaft im Kontext angeboten: 851-0147-01L Philosophische Betrachtungen zur Physik II
O7 KP4V + 2UK. S. Kirch
KurzbeschreibungEinführung in die Wellenlehre, Elektrizität und Magnetismus. Diese Vorlesung stellt die Weiterführung von Physik I dar, in der die Grundlagen der Mechanik gegeben wurden.
LernzielGrundkenntnisse zur Mechanik sowie Elektrizität und Magnetismus sowie die Fähigkeit, physikalische Problemstellungen zu diesen Themen eigenhändig zu lösen.
Obligatorische Fächer
Prüfungsblock II
NummerTitelTypECTSUmfangDozierende
401-2284-00LMass und Integral Information O6 KP3V + 2UU. Lang
KurzbeschreibungAbstrakte Mass- und Integrationstheorie, inklusive: Satz von Caratheodory, Lebesgue-Mass, Konvergenzsätze, L^p-Räume, Satz von Radon-Nikodym, Produktmasse und Satz von Fubini, Masse auf topologischen Räumen
LernzielGrundlagen der abstrakten Mass- und Integrationstheorie
InhaltAbstrakte Mass- und Integrationstheorie, inklusive: Satz von Caratheodory, Lebesgue-Mass, Konvergenzsätze, L^p-Räume, Satz von Radon-Nikodym, Produktmasse und Satz von Fubini, Masse auf topologischen Räumen
SkriptLink
Literatur- D. A. Salamon, Measure and Integration, EMS 2016
- W. Rudin, Real and Complex Analysis, McGraw-Hill 1987
- P. R. Halmos, Measure Theory, Springer 1950
401-2004-00LAlgebra IIO5 KP2V + 2UM. Burger
KurzbeschreibungDie Hauptthemen der Vorlesung sind Körpererweiterungen und Galoistheorie.
LernzielEinführung in die Grundlagen der Körpererweiterungen, der Galoistheorie, sowie verwandter Gebiete.
InhaltDas Hauptthema wird die Galoistheorie sein. Ausgansgpunkt ist
das Problem der Loesung algebraischen Gleichungen mit Radikalen. Galoistheorie loest dieses Problem in dem es einen Zusammenhang herstellt zwischen Koerpererweiterungen und endlichen Gruppen. Insbesondere werden wir den Satz von Abels-Ruffini, dass es Gleichungen fuenften Grades gibt die nicht mittels Radikalen loesbar sind beweisen, sowie das Theorem von Galois das die Polynome charakterisiert deren Wurzeln mittels Radikalen dargestellt werden koennen.
LiteraturJoseph J. Rotman, "Advanced Modern Algebra" third edition, part 1,
Graduate Studies in Mathematics,Volume 165
American Mathematical Society

Galois Theory is the topic treated in Chapter A5.
401-2554-00LTopology Information O6 KP3V + 2UA. Sisto
KurzbeschreibungTopics covered include: Topological and metric spaces, continuity, connectedness, compactness, product spaces, separation axioms, quotient spaces, homotopy, fundamental group, covering spaces.
LernzielAn introduction to topology i.e. the domain of mathematics that studies how to define the notion of continuity on a mathematical structure, and how to use it to study and classify these structures.
LiteraturJames Munkres: Topology
401-2654-00LNumerical Analysis IIO6 KP3V + 2UH. Ammari
KurzbeschreibungThe central topic of this course is the numerical treatment of ordinary differential equations. It focuses on the derivation, analysis, efficient implementation, and practical application of single step methods and pay particular attention to structure preservation.
LernzielThe course aims to impart knowledge about important numerical methods for the solution of ordinary differential equations. This includes familiarity with their main ideas, awareness of their advantages and limitations, and techniques for investigating stability and convergence. Further, students should know about structural properties of ordinary diferential equations and how to use them as guideline for the selection of numerical integration schemes. They should also acquire the skills to implement numerical integrators in MATLAB and test them in numerical experiments.
InhaltChapter 1. Some basics
1.1. What is a differential equation?
1.2. Some methods of resolution
1.3. Important examples of ODEs
Chapter 2. Existence, uniqueness, and regularity in the Lipschitz case
2.1. Banach fixed point theorem
2.2. Gronwall’s lemma
2.3. Cauchy-Lipschitz theorem
2.4. Stability
2.5. Regularity
Chapter 3. Linear systems
3.1. Exponential of a matrix
3.2. Linear systems with constant coefficients
3.3. Linear system with non-constant real coefficients
3.4. Second order linear equations
3.5. Linearization and stability for autonomous systems
Chapter 4. Numerical solution of ordinary differential equations
4.1. Introduction
4.2. The general explicit one-step method
4.3. Example of linear systems
4.4. Runge-Kutta methods
4.5. Multi-step methods
4.6. Stiff equations and systems
4.7. Perturbation theories for differential equations
Chapter 5. Geometrical numerical integration methods for differential equation
5.1. Introduction
5.2. Structure preserving methods for Hamiltonian systems
5.3. Runge-Kutta methods
5.4. Long-time behaviour of numerical solutions
Chapter 6. Finite difference methods
6.1. Introduction
6.2. Numerical algorithms for the heat equation
6.3. Numerical algorithms for the wave equation
6.4. Numerical algorithms for the Hamilton-Jacobi equation in one dimension
Chapter 7. Stochastic differential equations
7.1. Introduction
7.2. Langevin equation
7.3. Ornstein-Uhlenbeck equation
7.4. Existence and uniqueness of solutions in dimension one
7.5. Numerical solution of stochastic differential equations
SkriptLecture notes including supplements will be provided electronically.

Please find the lecture homepage here:

Link

All assignments and some previous exam problems will be available for download on lecture homepage.
LiteraturNote: Extra reading is not considered important for understanding the
course subjects.

Deuflhard and Bornemann: Numerische Mathematik II - Integration gewöhnlicher Differentialgleichungen, Walter de Gruyter & Co., 1994.

Hairer and Wanner: Solving ordinary differential equations II - Stiff and differential-algebraic problems, Springer-Verlag, 1996.

Hairer, Lubich and Wanner: Geometric numerical integration - Structure-preserving algorithms for ordinary differential equations}, Springer-Verlag, Berlin, 2002.

L. Gruene, O. Junge "Gewoehnliche Differentialgleichungen", Vieweg+Teubner, 2009.

Hairer, Norsett and Wanner: Solving ordinary differential equations I - Nonstiff problems, Springer-Verlag, Berlin, 1993.

Walter: Gewöhnliche Differentialgleichungen - Eine Einführung, Springer-Verlag, Berlin, 1972.

Walter: Ordinary differential equations, Springer-Verlag, New York, 1998.
Voraussetzungen / BesonderesHomework problems involve MATLAB implementation of numerical algorithms.
401-2604-00LWahrscheinlichkeit und StatistikO7 KP4V + 2UJ. Teichmann
Kurzbeschreibung- Laplace-Modelle, Irrfahrten, bedingte Wahrscheinlichkeiten, Unabhängigkeit.
- Axiome von Kolmogorov, Zufallsvariablen, Momente, mehrdimensionale Verteilungen, Gesetze der grossen Zahlen und zentraler Grenzwertsatz.
- Punktschätzungen, Tests und Vertrauensinvervalle.
LernzielZiel der Vorlesung ist die Vermittlung der Grundkonzepte von Wahrscheinlichkeitstheorie und mathematischer Statistik. Neben der mathematisch präzisen Behandlung wird auch Wert auf Intuition und Anschauung gelegt. Die Vorlesung setzt die Masstheorie nicht systematisch ein, verweist aber auf die Zusammenhänge.
Inhalt- Diskrete Wahrscheinlichkeitsräume: Laplace-Modelle, Binomial- und Poissonverteilung, bedingte Wahrscheinlichkeiten, Unabhängigkeit, Irrfahrten, erzeugende Funktionen, eventuell Markovketten.
- Allgemeine Wahrscheinlichkeitsräume: Axiome von Kolmogorov, Zufallsvariablen und ihre Verteilungen, Erwartungswert und andere Kennzahlen, Entropie, charakteristische Funktionen, mehrdimensionale Verteilung inkl. Normalverteilung, Summen von Zufallsvariablen.
- Grenzwertsätze: Schwaches und starkes Gesetz der grossen Zahlen, zentraler Grenzwertsatz.
- Statistik: Fragestellungen der Statistik (Schätzen, Vertrauensintervalle, Testen), Verknüpfung Statistik und Wahrscheinlichkeit, Neyman-Pearson Lemma, Wilcoxon-, t- und Chiquadrat-Test, Beurteilung von Schätzern, kleinste Quadrate.
Kernfächer
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3532-08LDifferential Geometry II Information W10 KP4V + 1UD. A. Salamon
KurzbeschreibungIntroduction to Differential Topology,
including degree theory and intersection theory;
Differential forms, including deRham cohomology and Poincare duality;
Vector bundles, including Thom isomorphism and Euler number.
LernzielThe aim of this course is to give an introduction to Differential Topology
including the degree of a mapping and intersection theory,
differential forms including deRham cohomology and Poincare duality,
and vector bundles including the Thom isomorphism theorem.
InhaltIntroduction to Differential Topology, including the mod-2 degree,
orientation and the Brouwer degree, Poincare-Hopf Theorem,
the Pontryagin construction, Hopf Degree Theorem.,
intersection theory, Lefschetz numbers;
Differential forms, Stokes, Cartan's formula, deRham cohomology,
Mayer-Vietoris, Poincare duality, Euler characteristic, Degree Theorem,
Gauss-Bonnet, Moser isotopy, Cech-DeRham complex and finite-dimensionality;
Vector bundles, Thom isomorphism, Euler number.
Literatur- J. Milnor, Topology from the Differential Viewpoint. Univ Virginia Press, 1969.
- V. Guillemin, A. Pollack, Differential Topology. Prentice-Hall, 1974.
- R. Bott, L.W. Tu, Differential Forms in Algebraic Topology, Springer, 1982.
- J. Robbin, D. Salamon, Introduction to Differential Topology, in preparation. Link
Voraussetzungen / BesonderesPrerequisite is a working knowledge of the introductory material in Differential Geometry I,
including smooth manifolds, tangent bundles, vector fields and flows.
see Link
401-3462-00LFunctional Analysis II Information W10 KP4V + 1UA. Carlotto
KurzbeschreibungFundamentals of the theory of distributions, Sobolev spaces, weak solutions of elliptic boundary value problems (solvability results both via linear methods and via direct variational methods), elliptic regularity theory, Schauder estimates, selected applications coming from physics and differential geometry.
LernzielAcquiring the language and methods of the theory of distributions in order to study differential operators and their fundamental solutions; mastering the notion of weak solutions of elliptic problems both for scalar and vector-valued maps, proving existence of weak solutions in various contexts and under various classes of assumptions; learning the basic tools and ideas of elliptic regularity theory and gaining the ability to apply these methods in important instances of contemporary mathematics.
SkriptLecture notes "Funktionalanalysis II" by Michael Struwe.
LiteraturUseful references for the course are the following textbooks:

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

David Gilbarg, Neil Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

Qing Han, Fanghua Lin. Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.

Michael Taylor. Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, 115. Springer, New York, 2011.

Lars Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer-Verlag, Berlin, 2003.
Voraussetzungen / BesonderesFunctional Analysis I plus a solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces).
401-3114-00LAlgebraic Number TheoryW10 KP4V + 1UR. Pink
KurzbeschreibungAlgebraic integers, discriminant, ideal class group, Minkowski's theorem on the finiteness of the ideal class group, Dirichlet's unit theorem, cyclotomic fields, ramification theory, valuations, p-adic numbers, local fields, Galois theory of valuations, (+ other material from Neukirch's book for which time remains)
Lernziel
LiteraturJürgen Neukirch: Algebraic number theory. Springer-Verlag, 1999.
Voraussetzungen / BesonderesAlgebra II with Galois theory is a must;
some commutative algebra of modules and Dedekind rings is desired.

Lecture homepage:
Link
401-3146-12LAlgebraic Geometry Information W10 KP4V + 1UE. Kowalski
KurzbeschreibungThis course is an Introduction to Algebraic Geometry (algebraic varieties and schemes).
LernzielLearning Algebraic Geometry.
LiteraturPrimary reference:
* Ulrich Görtz and Torsten Wedhorn: Algebraic Geometry I, Advanced Lectures in Mathematics, Springer.

Secondary reference:
* Qing Liu: Algebraic Geometry and Arithmetic Curves, Oxford Science Publications.
* Robin Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, Springer.
* Siegfried Bosch: Algebraic Geometry and Commutative Algebra (Springer 2013).

Other good textbooks and online texts are:
* David Eisenbud, Joe Harris: The Geometry of Schemes, Graduate Texts in Mathematics, Springer.
* Ravi Vakil, Foundations of Algebraic Geometry, Link
* Jean Gallier and Stephen S. Shatz, Algebraic Geometry Link

"Classical" Algebraic Geometry over an algebraically closed field:
* Joe Harris, Algebraic Geometry, A First Course, Graduate Texts in Mathematics, Springer.
* J.S. Milne, Algebraic Geometry, Link

Further readings:
* Günter Harder: Algebraic Geometry 1 & 2
* I. R. Shafarevich, Basic Algebraic geometry 1 & 2, Springer-Verlag.
* Alexandre Grothendieck et al.: Elements de Geometrie Algebrique EGA
* Saunders MacLane: Categories for the Working Mathematician, Springer-Verlag.
Voraussetzungen / BesonderesRequirement: Some knowledge of Commutative Algebra.
401-3002-12LAlgebraic Topology II Information W8 KP4GW. Merry
KurzbeschreibungThis is a continuation course to Algebraic Topology I. Topics covered include:

- Universal coefficients,
- The Eilenberg-Zilber Theorem and the Künneth Formula),
- The cohomology ring,
- Fibre bundles, the Leray-Hirsch Theorem, and the Gysin sequence,
- Topological manifolds and Poincaré duality,
- Higher homotopy groups and fibrations.
Lernziel
SkriptI will produce full lecture notes, available on my website at

Link
Literatur"Algebraic Topology" (CUP, 2002) by Hatcher is excellent and covers all the material from both Algebraic Topology I and Algebraic Topology II. You can also download it (legally!) for free from Hatcher's webpage:

Link

Another classic book is Spanier's "Algebraic Topology" (Springer, 1963). This book is very dense and somewhat old-fashioned, but again covers everything you could possibly want to know on the subject.
Voraussetzungen / BesonderesFamiliarity with all the material from Algebraic Topology I will be assumed (the fundamental group, singular homology, cell complexes, the Eilenberg-Steenrod axioms, the basics of homological algebra and category theory). Full lecture notes for Algebraic Topology I can be found on my webpage.
» Kernfächer aus Bereichen der reinen Mathematik (Mathematik Master)
Kernfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
NummerTitelTypECTSUmfangDozierende
401-3052-10LGraph Theory Information W10 KP4V + 1UB. Sudakov
KurzbeschreibungBasics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem
LernzielThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
SkriptLecture will be only at the blackboard.
LiteraturWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
401-3652-00LNumerical Methods for Hyperbolic Partial Differential Equations (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: MAT827

Beachten Sie die Einschreibungstermine an der UZH: Link
W10 KP4V + 1UR. Abgrall
KurzbeschreibungThis course treats numerical methods for hyperbolic initial-boundary value problems, ranging from wave equations to the equations of gas dynamics. The principal methods discussed in the course are finite volume methods, including TVD, ENO and WENO schemes. Exercises involve implementation of numerical methods in MATLAB.
LernzielThe goal of this course is familiarity with the fundamental ideas and mathematical
consideration underlying modern numerical methods for conservation laws and wave equations.
Inhalt* Introduction to hyperbolic problems: Conservation, flux modeling, examples and significance in physics and engineering.

* Linear Advection equations in one dimension: Characteristics, energy estimates, upwind schemes.

* Scalar conservation laws: shocks, rarefactions, solutions of the Riemann problem, weak and entropy solutions, some existence and uniqueness results, finite volume schemes of the Godunov, Engquist-Osher and Lax-Friedrichs type. Convergence for monotone methods and E-schemes.

* Second-order schemes: Lax-Wendroff, TVD schemes, limiters, strong stability preserving Runge-Kutta methods.

* Linear systems: explicit solutions, energy estimates, first- and high-order finite volume schemes.

* Non-linear Systems: Hugoniot Locus and integral curves, explicit Riemann solutions of shallow-water and Euler equations. Review of available theory.
SkriptLecture slides will be made available to participants. However, additional material might be covered in the course.
LiteraturH. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer 2011. Available online.

R. J. LeVeque, Finite Volume methods for hyperbolic problems, Cambridge university Press, 2002. Available online.

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, Ellipses, Paris, 1991.
Voraussetzungen / BesonderesHaving attended the course on the numerical treatment of elliptic and parabolic problems is no prerequisite.

Programming exercises in MATLAB

Former course title: "Numerical Solution of Hyperbolic Partial Differential Equations"
  •  Seite  1  von  5 Nächste Seite Letzte Seite     Alle