Suchergebnis: Katalogdaten im Herbstsemester 2017
GESS Wissenschaft im Kontext (Science in Perspective) Nur die in diesem Abschnitt aufgelisteten Fächer können als "GESS Wissenschaft im Kontext" angerechnet werden. Weiter unten finden Sie die Kurse im Bereich "Typ B. Reflexion über fachspezifische Methoden und Inhalte" sowie den Bereich "Sprachkurse" Im Bachelorstudium sind 6 KP und im Masterstudium 2 KP zu erwerben. Studierende, die eine Lerneinheit bereits im Rahmen ihres Fachstudiums abgelegt haben, dürfen dieselbe Veranstaltung NICHT nochmals belegen! | ||||||
Typ B: Reflexion über fachspezifische Methoden und Inhalte Fachspezifische Lerneinheiten. Empfohlen für Studierende ab der Basisprüfung im Bachelor- oder für Studierende im Master- oder Promotionsstudium. Studierende, die eine Lerneinheit bereits im Rahmen ihres Fachstudiums abgelegt haben, dürfen dieselbe Veranstaltung NICHT nochmals belegen! Diese Lerneinheiten sind alle auch unter "Typ A" aufgelistet, d.h. sie sind grundsätzlich für alle Studierenden belegbar. | ||||||
D-PHYS | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
851-0585-04L | Lecture with Computer Exercises: Modelling and Simulating Social Systems with MATLAB Maximale Teilnehmerzahl: 70 Besonders geeignet für Studierende D-MAVT, D-INFK, D-ITET, D-MTEC, D-PHYS. | W | 3 KP | 2S | O. Woolley, D. Helbing, L. Sanders | |
Kurzbeschreibung | This course introduces mathematical and computational models to study social systems, the mathematical software package MATLAB, and the process of scientific research. Students develop a significant project, implementing a model and communicating their results through a seminar thesis and a short oral presentation. | |||||
Lernziel | The students should learn how to use MATLAB as a tool to solve various scientific problems. MATLAB is an integrated environment with a high level programming language which makes it possible to quickly find numerical solutions to a wide range of scientific problems. Furthermore, it includes a rich set of tools for graphically presenting the results. After the students have learned the basic structure of the programming language, they should be able to implement social simulation models in MATLAB and document their skills through a seminar thesis and finally give a short oral presentation. | |||||
Inhalt | This course introduces first the basic functionalities and features of the mathematical software package MATLAB, such as the simple operations with matrices and vectors, differential equations, statistical tools, the graphical representation of data in various forms, and video animations of spatio-temporal data. With this knowledge, students are expected to implement themselves in MATLAB, models of various social processes and systems, including agent-based models, e.g. models of interactive decision making, group dynamics, human crowds, or game-theoretical models. Part of this course will consist of supervised programming exercises in a computer pool. Credit points are finally earned for the implementation of a mathematical model from the sociological literature in MATLAB and the documentation in a seminar thesis. | |||||
Skript | The lecture slides will be presented on the course web page after each lecture. | |||||
Literatur | Literature, in particular regarding computer models in the social sciences, will be provided in the course. | |||||
Voraussetzungen / Besonderes | The number of participants is limited to the size of the available computer teaching room. The MATLAB code related to the seminar thesis should be well enough documented for further use by others and must be handed over to the Chair of Sociology, in particular of Modeling and Simulation, for further free and unrestricted use. | |||||
851-0144-07L | Das Unendliche in der Philosophie und den exakten Wissenschaften: Logik, Mathematik, Physik Maximale Teilnehmerzahl: 40 Besonders geeignet für Studierende D-MATH, D-PHYS | W | 3 KP | 2S | G. Sommaruga | |
Kurzbeschreibung | Das Thema des Unendlichen soll einerseits historisch angegangen werden, indem philosophische Texte z.B. von Kant, Bolzano und Cantor behandelt werden. Andererseits soll das Thema auch vom (ahistorischen) wissenschaftlichen Standpunkt aus betrachtet werden: vom Standpunkt der Logik und der Mathematik sowie der Physik. | |||||
Lernziel | Verschiedene Typen von Unendlichem kennen lernen; herausfinden, was am Unendlichen so rätselhaft oder problematisch ist; untersuchen, ob die verschiedenen Typen des Unendlichen (wesentliche) gemeinsame Merkmale haben. | |||||
851-0144-20L | Philosophical Aspects of Quantum Physics Particularly suitable for students of D-CHAB, D-PHYS | W | 3 KP | 2S | N. Sieroka, R. Renner | |
Kurzbeschreibung | This course provides an introduction to philosophical issues about quantum physics. In particular, we will examine key concepts (such as locality and time) and different interpretations of quantum mechanics (such as the many-worlds interpretation). | |||||
Lernziel | By the end of the course students are able to describe and compare different interpretations of quantum mechanics. They are able to identify and examine issues about these different interpretations as well as more general issues concerning key concepts of quantum physics and concerning the transition between quantum and classical descriptions in physics. Students are in a position to critically discuss and evaluate the repercussions of these issues in broader scientific contexts. The course is part of ETH's "Critical Thinking"-Initiative and facilitates students' abilities to express their thoughts clearly and effectively (both verbally and in writing). | |||||
851-0125-65L | A Sampler of Histories and Philosophies of Mathematics Besonders geeignet für Studierende D-CHAB, D-INFK, D-ITET, D-MATH, D-PHYS | W | 3 KP | 2V | R. Wagner | |
Kurzbeschreibung | This course will review several case studies from the history of mathematics (Greek geometry, early modern European notions of infinity and 20th century constructive and axiomatic approaches). The case studies will be analyzed from various philosophical perspectives, while rooting them in their historical and cultural contexts. | |||||
Lernziel | The course aims are: 1. To introduce students to the historicity of mathematics 2. To make sense of mathematical practices that appear unreasonable from a contemporary point of view 3. To develop critical reflection concerning the nature of mathematical objects 4. To introduce realist, dialectical, practical and constructivist approaches to the philosophy and history of mathematics 5. To open the students' horizons to the plurality of mathematical cultures and practices |
- Seite 1 von 1